

Application of Causal Inference Methods to Improve Treatment of HIV in Resource-Limited Settings

Maya Petersen

works.bepress.com/maya_petersen

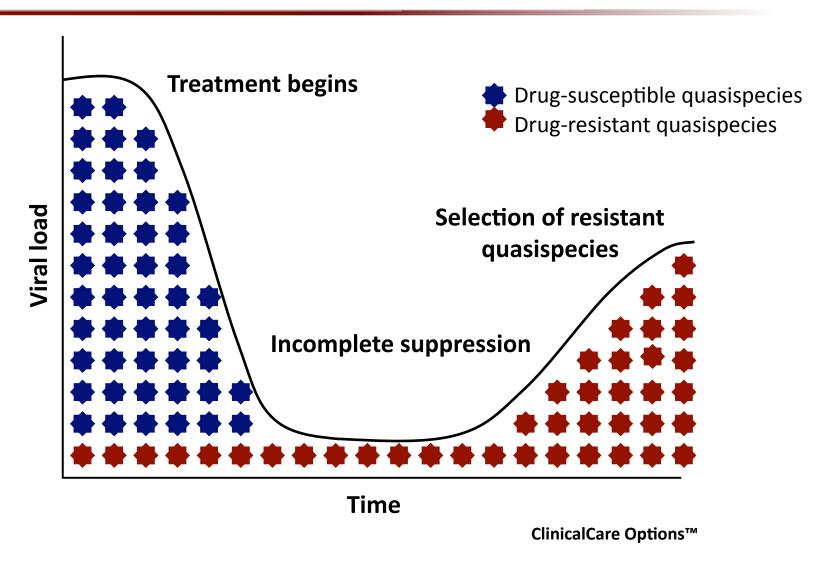
Divisions of Biostatistics and Epidemiology,

University of California, Berkeley

Outline

- 1. What types of questions can causal inference methods help us to answer?
 - Example: Strategies for detecting and managing first line failure
- 2. When do standard analysis methods break down?
 - Time-dependent confounding of longitudinal treatments
- 3. What estimation tools are available?
 - Inverse Probability Weighting
 - Longitudinal G- computation
 - New methods coming...

HIV frequently develops resistance to antiretroviral drugs



Detecting and responding to virological failure

- Once virological failure develops, change regimen immediately to prevent additional resistance and disease progression
- -> Standard of care: Regular viral load monitoring
 - Detect failure and initiate change in regimen
- Viral loads are expensive and require significant infrastructure
 - Burden of HIV greatest in resource-limited settings where viral loads often not available

When to switch? WHO 2010 Recommendations

Virological	Plasma viral load above 5000 copies/ml (confirmation recommended)
Immunological	 Fall of CD4 count to pre-therapy baseline (or below); or 50% fall from the on-treatment peak value; or Persistent CD4 levels below 100 cells/mm
Clinical	New or recurrent WHO Stage 4 condition (not IRIS; +/- some Stage 3)

Impact of Alternative WHO Failure Criteria?

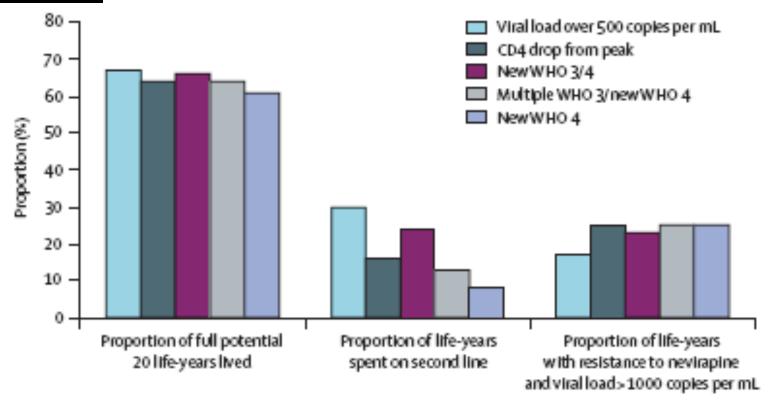
- Many studies: Immunologic criteria have poor sensitivity for detecting virological failure
 - Ex: Keiser (2009): Sensitivity 17% (7,32)
- ART-LINC (2009): Higher switch rates and switch at higher CD4 counts in programs that have VL monitoring
- Use of CD4 vs. VL-based criteria will result in delayed switch for many

Impact of Alternative WHO Failure Criteria?

- Systematic review
 - Chang et al (Cochrane 2010)
- HBAC (Tororo, Uganda): RCT comparing clinical/CD4/VL
 - Published in abstract only (CROI 2008)...
- Three ongoing RCTs...
 - Zambia (Saag): routine vs. targeted VL
 - Thailand (Lallemant): CD4 vs. VL
 - Cameroon (Laurent): CD4/VL vs. clinical
 - Multi-country (PENPACT1): different VL thresholds in kids

Mathematical model of alternative monitoring strategies in Africa

 Monitoring based on CD4 instead of viral load results in longer delay until treatment modification, <u>but little long-term mortality</u> difference



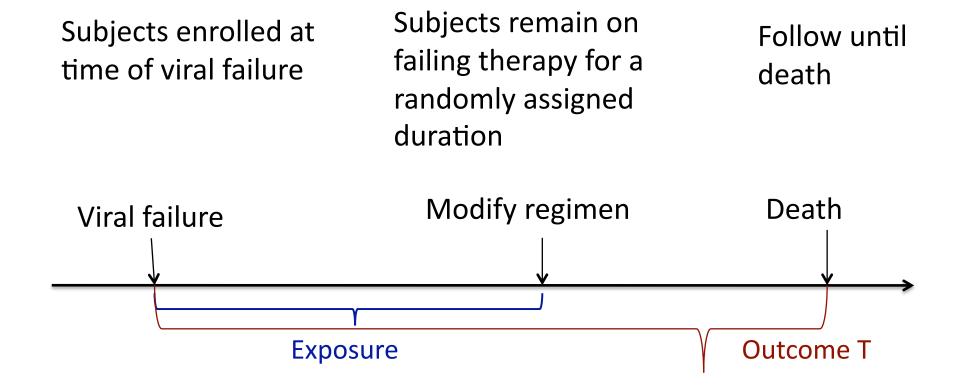
Phillips et. al. Lancet 2008, 20 year outcomes

Impact of alternative monitoring strategies

- Will delayed regimen modification after loss of viral suppression increase mortality? How much?
- Will use of CD4 (or clinical) rather than VL-based switching criteria increase mortality? How much?
- Which CD4 criteria will give the best patient outcomes?

Hypothetical Randomized Trial

 Will delayed regimen modification following viral failure increase long-term mortality?



Counterfactuals

- T_{switch}: counterfactual survival time under a specified switch time
 - Example: T_0 = an individual's survival if she were to have switched immediately
- Ideally, observe the survival time of everyone in the population under each possible delay time
 - Compare survival under different delay times
- Example: E(T_{switch at 0 mo} T_{switch at 9 mo})
 - Difference in mean survival time if everyone in population had switched immediately versus after a 9 month delay

Marginal Structural Models

- Model on the counterfactual outcome
 - Ex. Model Discrete Hazard

$$P(T_{switch} = t | T_{switch} \ge t) = m(t, switch | \beta)$$

– One possible model:

$$logit(m(t, switch|\beta)) =$$

$$\beta_0 + \beta_1 \min(t, switch) + \beta_2 t + \beta_3 \min(t, switch) \times t$$

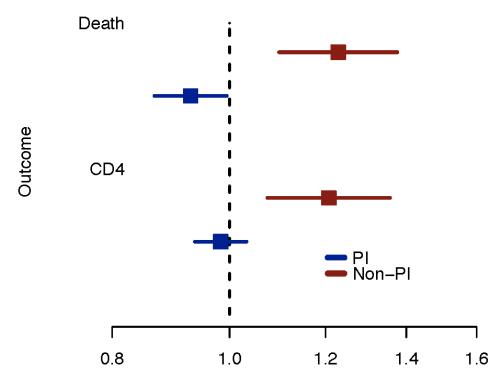
For a given time t, linear summary (on log odds scale)
 of the cumulative effect of time on failing therapy on
 the discrete hazard of death at t

Prospective clinical cohort data

- 2 cohorts of HIV-infected patients
 - Johns Hopkins; Univ. North Carolina, Chapel Hill
- Eligible when experience virologic failure on HAART (t=0)
 - 982 subjects, 3414 person-years follow-up, 93 deaths
 - 742 failed a PI-based regimen; 240 fail a non-PI based regimen
- Primary outcome: All-cause mortality
 - Secondary outcome: immunological failure
- Exposure: Delay from virological failure to switch
- Covariates: Demographics, risk group, CD4/CD8,
 Viral Load, AIDS-related DX, ARV history

Delayed modification following failure of a HAART regimen without a protease inhibitor increases mortality

Effect of Delayed Regimen Modification



Hazard ratio per additional 3 month delay

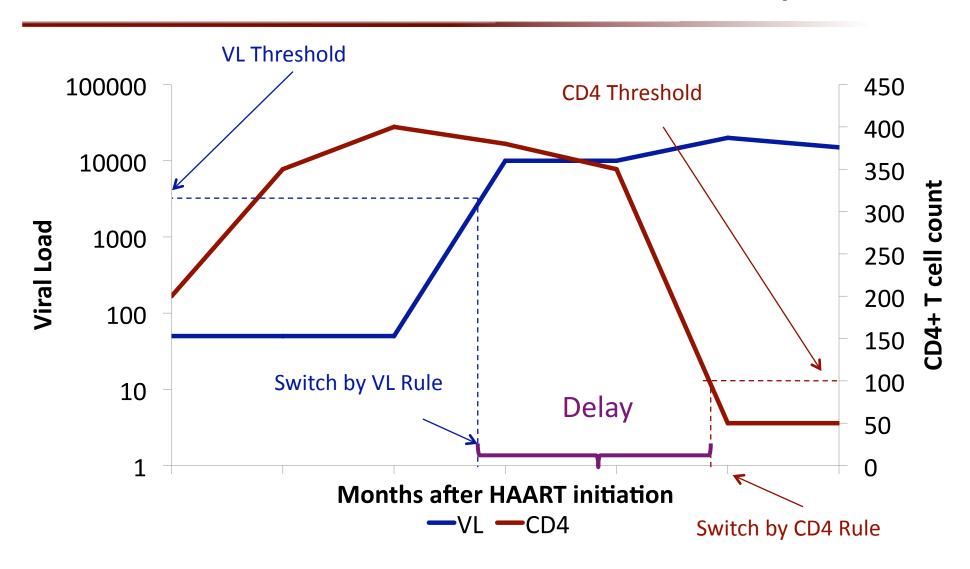
How much does this tell us about the importance of viral load monitoring in Africa?

- Subjects from North America
 - Different health care systems, patient populations....
- A historical cohort, not representative of current first line failures
 - Included failures between 1996 and 2006
 - Roughly 50% of sample exposed to ARVs prior to 1996
 - Not powered to exclude these individuals
- Does not directly address the question: What impact will lack of viral load monitoring have on mortality?

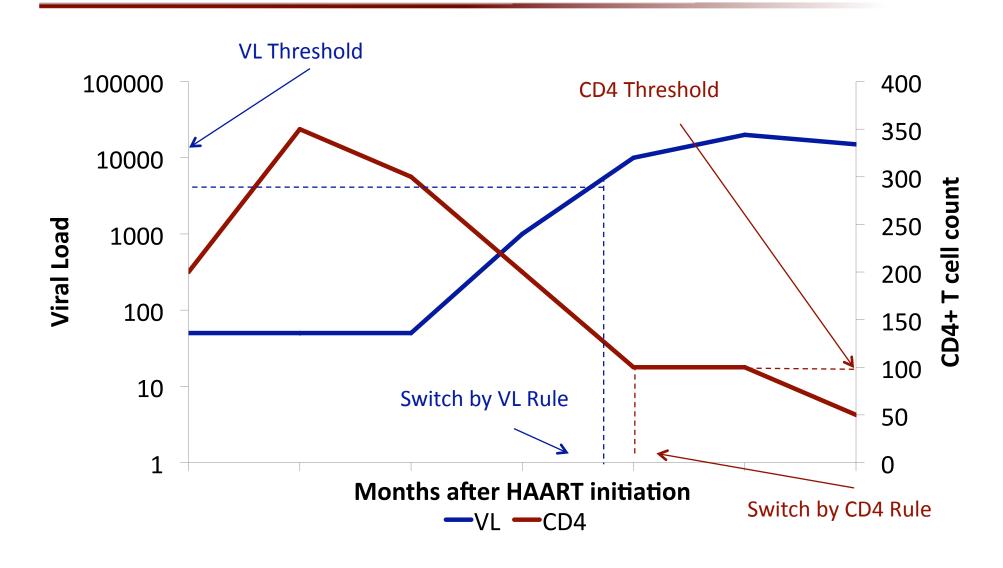
Refining the Question

- Say we find that delayed modification after viral failure does increase mortality
- Substantial data suggest that use of CD4 counts rather viral loads will increase the average delay time between viral failure and switch
- Does this imply that use of a CD4-based switching strategy will increase mortality?

Subject #1: Delayed switch after failure; CD4 elevated for much of the delay time



Subject #2: Minimally delayed switch after failure



Refining the Question

- Say we find that delayed modification after viral failure does increase mortality
- Substantial data suggest that use of CD4 counts rather viral loads will increase the average delay time between viral failure and switch
- Does this imply that use of a CD4-based switching strategy will increase mortality?

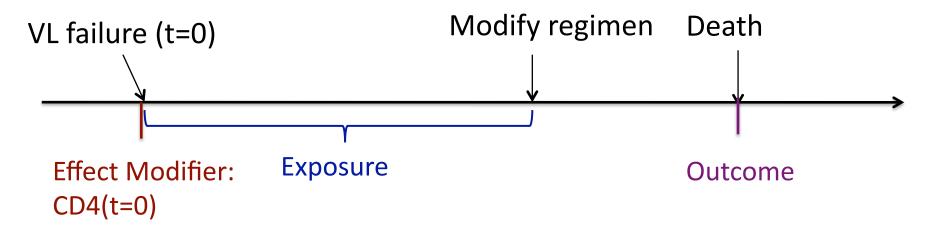
Not necessarily....

- Subject 1 meets CD4 failure criteria months after virologically failing
 - Substantial delay in modification if CD4 versus viral load strategy is used for patients like this
- Subject 2 meets CD4 failure criteria shortly after virologically failing
 - Minimal delay in modification if CD4 versus viral load strategy is used for patients like this
- Is delay harmful for subject 2, or just for subject 1?

Defining the Target Parameter in Terms of a Series of Hypothetical Randomized Trials

 Hypothesis: The effect of delayed regimen modification differs depending on a subject's current CD4 count

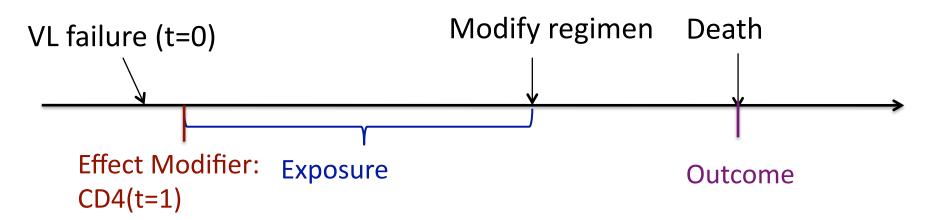
At t=0, randomly assign delay conditional on (within strata of) current CD4 count



Defining the Target Parameter in Terms of a Series of Hypothetical Randomized Trials

 Hypothesis: The effect of delayed regimen modification differs depending on a subject's current CD4 count

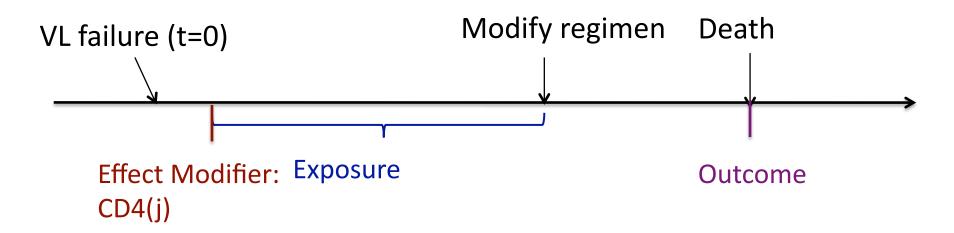
At t=1, randomly assign delay time to subjects who have not yet switched conditional on current CD4 count



Defining the Target Parameter in Terms of a Series of Hypothetical Randomized Trials

- Series of trials, beginning at successive times j
 - Effect of additional delay until regimen modification on future outcome
 - Modification of this effect by CD4 count at time j

At time *j*, randomly assign delay time to subjects who have not yet switched conditional current CD4 count



History-Adjusted Marginal Structural Models (HA-MSM)

- Generalization of standard MSM
 - Different parameter of interest
 - Indexed by interventions beginning at different time points
 - HA-MSM assume a standard MSM beginning at each time point
 - For counterfactuals indexed by treatment after time j
 - Conditional on some subset of the observed history up till time j
- HA-MSM allow us to assume common parameters across time points

Defining the Target Parameter Using a History-Adjusted Marginal Structural Model

 Ex: Model the counterfactual probability of survival at least 3 years among subjects who have not yet switched therapy as a function of future switch time and current CD4 count

$$E(Y_{Orig(j)=1,switch}(j+3)|Orig(j) = 1, CD4(j)) =$$

$$\beta_0 + \beta_1 \min(j+3,switch) + \beta_2 CD4(j)$$

$$+\beta_3 \min(j+3,switch) \times CD4(j)$$

Defining the Target Parameter Using a History-Adjusted Marginal Structural Model

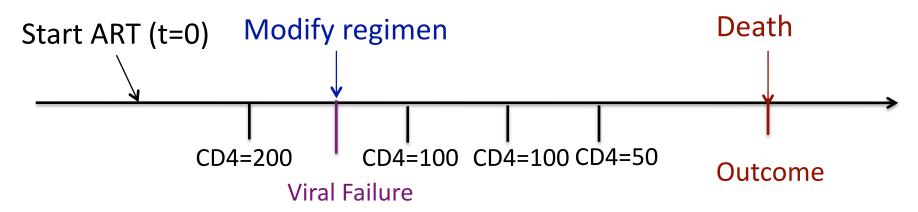
- Allows us to test the hypotheses
- 1. Effect of delayed regimen modification following virological failure differs depending on a subject's CD4 count during failure
- Delayed regimen modification remains harmful for subjects who maintain CD4 counts about the WHO switching threshold
 - These are the subjects who will actually be subjected to delays
 - Evidence for importance of VL monitoring

Impact of alternative monitoring strategies

- Will delayed regimen modification after loss of viral suppression increase mortality? How much?
- Will use of CD4 (or clinical) rather than VL-based switching criteria increase mortality? How much?
- Which CD4 criteria will give the best patient outcomes?

Hypothetical Randomized Trial

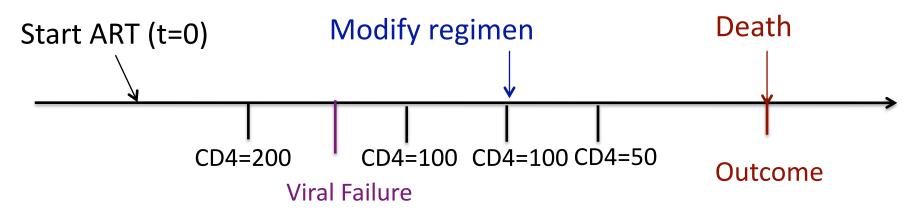
- At time of ART initiation, randomly assign patients to VL versus CD4 monitoring
- Rule=I (assigned to VL arm)
- Stay on first line regimen until meet failure criteria for your assigned strategy
- Measure Outcome



Ex: Rule=1 (assigned to VL arm)

Hypothetical Randomized Trial

- At time of ART initiation, randomly assign patients to VL versus CD4 monitoring
- Rule=I (assigned to VL arm)
- Stay on first line regimen until meet failure criteria for your assigned strategy
- Measure Outcome



Exposure=What strategy are you assigned to? ("Rule") Ex: Rule=0 (assigned to CD4 arm)

Dynamic versus static regimes

- A different type of intervention
- Rather than assigning a fixed treatment, assign treatment according to a strategy or rule
 - What treatment a given subject gets depends on that subject's covariate values
 - Ex. VL trajectory, CD4 trajectory...
- This is an example of a dynamic regime question
 - Different counterfactuals
 - Different estimation methods

Dynamic Counterfactuals

- T_{rule}: counterfactual survival time under specific rule for deciding when to switch
 - Ex. $T_{rule=1}$ = a subject's survival time if he had followed a VL-based switching rule
 - Ideally, compare survival distribution under VL versus CD4 switching rules
- Example: E(T_{rule=1} T_{rule=0})
 - Difference in mean survival time if whole population had followed a VL-based versus CD4based switching strategy

Dynamic Marginal Structural Models

- Model on counterfactuals indexed by dynamic rules
 - Ex: Model for Discrete Hazard

$$P(T_{rule} = t | T_{rule} \ge t) = m(t, rule | \beta)$$

- One possible model:

$$logit(m(t, rule | \beta)) =$$

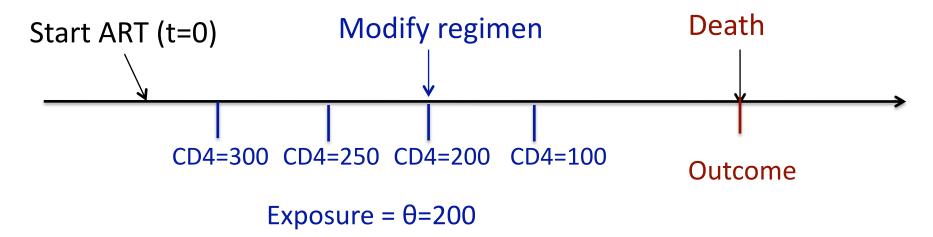
$$\beta_0 + \beta_1 rule + \beta_2 t + \beta_3 rule \times t$$

Impact of alternative monitoring strategies

- Will delayed regimen modification after loss of viral suppression increase mortality? How much?
- Will use of CD4 (or clinical) rather than VL-based switching criteria increase mortality? How much?
- Which CD4 criteria will give the best patient outcomes?

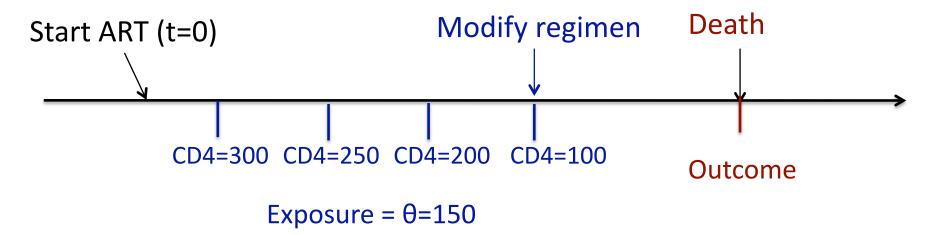
Hypothetical Randomized Trial

- At time of ART initiation, randomly assign CD4 modification threshold θ
- Stay on first line regimen until CD4 count meets this criteria, then modify immediately (or within some allowed window)
- Measure Outcome



Hypothetical Randomized Trial

- At time of ART initiation, randomly assign CD4 modification threshold θ
- Stay on first line regimen until CD4 count meets this criteria, then modify immediately (or within some allowed window)
- Measure Outcome



Dynamic marginal structural models (2)

- What is the "best" threshold?
- Ex. Model the probability of survival for at least 7 years as a function of modification threshold θ and baseline CD4 count

$$P(T_{rule_{\theta}} \ge 7) = m(\theta|\beta)$$

One possible model:

$$logit(m(t,\theta|\beta)) = \beta_0 + \beta_1\theta + \beta_2\theta^2$$

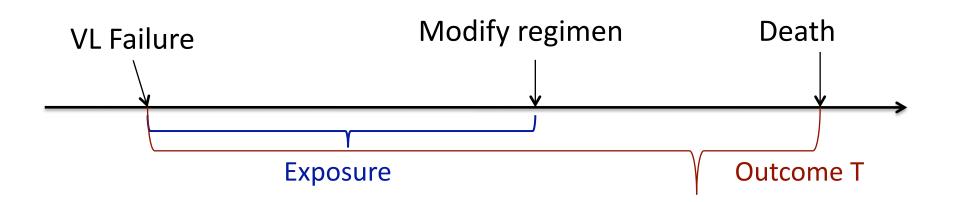
• Solve for θ_{opt} that maximizes probability of surviving at least 7 years....

Outline

- 1. What types of questions can causal inference methods help us to answer?
- 2. When do standard analysis methods break down?
 - Time-dependent confounding of longitudinal treatments
- 3. What estimation tools are available?
 - Inverse Probability Weighting
 - Longitudinal G- computation
 - New methods coming...

For Illustration, focus on first question

 Will delayed regimen modification after loss of viral suppression increase mortality? How much?



Simple Confounding

- Patients who are sicker (eg have lower CD4 counts/OD) at time of VL failure are more likely to modify immediately
 - Clinicians less likely to delay second line
 - These patients also more likely to die
 - Unadjusted analysis will underestimate harm from delayed switch
- Could control for this confounding by adjusting for baseline CD4 count (and other prognostic markers)

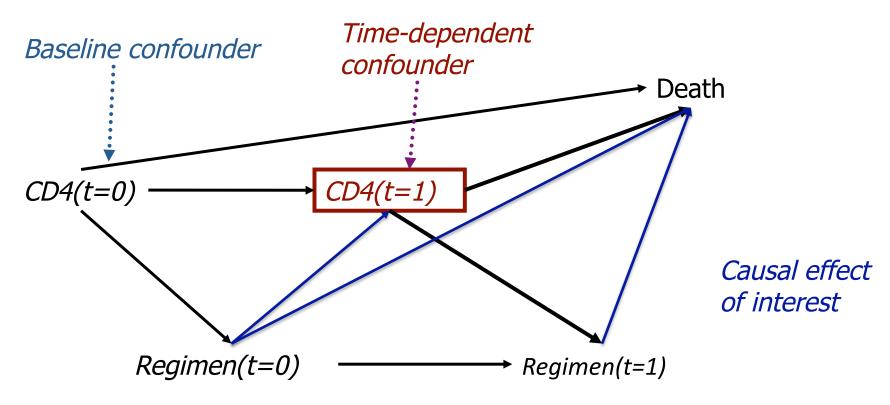
Time-dependent confounding

- Confounding by covariates after baseline
 - A subject whose CD4 counts decline rapidly following failure is more likely to modify therapy
 - A subject with rapidly declining CD4 has a worse prognosis
- Subjects who modify early are likely to be sicker than those who modify late
 - Even after controlling for baseline differences between the two groups
- Associations adjusted only for baseline covariates will still tend to underestimate the harm of delayed modification

Limitations of Standard Approaches

- Why can't we just adjust for these postbaseline differences between subjects who modify early and those who modify late?
 - Ex. Regress vital status on delay time, baseline CD4, and time-updated CD4?
- Post baseline confounders may be affected by the exposure!
 - Part of the causal pathway we are interested in
 - Adjusting for them will bias our estimates

Time-dependent confounding



• Can't control for *CD4(t=1)* in standard analyses: on causal pathway!

Outline

- 1. What types of questions can causal inference methods help us to answer?
- 2. When do standard analysis methods break down?
 - Time-dependent confounding of longitudinal treatments
- 3. What estimation tools are available?
 - Inverse Probability Weighting
 - Longitudinal G- computation
 - New methods coming...

Inverse probability of treatment weighting (IPTW)

- Confounding can be viewed as a problem of biased sampling
- Because the decision when to switch is not randomized, sicker patients are overrepresented in the group that switches earlier
- Goal of IPTW: reweight the sample to remove these imbalances

Inverse probability of treatment weighting (IPTW)

- IPTW: Creates a re-weighted dataset in which the exposure is randomized
 - Up-weight individuals whose observed exposure is rare given their covariates
 - Count the experience of rare individuals more than once to make up for people like them who are missing
- Ex. Sicker patients that delay modification get bigger weights

Implementation of IPTW (1)

- Model the probability of modifying therapy (exposure) given covariate history among subjects who remain on their failing therapy
 - E.g. Using multivariable logistic regression
- 2. Use this model to calculate predicted probability of each subject having his observed exposure history (switch time)

Implementation of IPTW (2)

- Weight= 1/ predicted probability of having observed switch time, given observed covariate history
 - Can also use stabilized weights
- 4. Fit a weighted regression of survival on time spent on failing therapy
 - Using specified MSM
 - Ex. Pooled logistic regression to estimate discrete hazard ratios

Inverse weighting is just one possible way to adjust for time-dependent confounders...

- IPTW: Control for confounding based on estimate of the probability of treatment over time given the past
- G-computation: Control for confounding based on estimate of the distribution of timedependent confounders (and survival) over time given the past

Longitudinal G-computation (1)

- Model the distribution of each covariate at each time point given past covariates and past treatment
 - Ex. Using series of multivariable pooled logistic and/or linear regression models
- 2. Model hazard of death at each time point given past covariates and past treatment
 - Ex. Using multivariable pooled logistic regression model

Longitudinal G-computation (2)

- 3. Use these models to simulate distribution of survival times under various delay times
 - Monte Carlo Simulation
 - Generate predicted survival times for each subject under each possible switch time
- 4. Using simulated data, fit a regression of survival on switch time
 - Using specified MSM, such as pooled logistic model

Model Specification

- Consistency of IPTW estimator depends on consistently estimating how treatment assignment depends on confounders
- Consistency of G-computation estimator depends on consistently estimating how covariates (and outcome) depend on the past
- Getting the specification of models to estimate either can be very challenging
- Data-adaptive algorithms
 - Cross-validation to choose best bias-variance tradeoff
 - Example: Superlearner

Key Assumptions (1)

- 1. No unmeasured confounders
 - Key determinants of survival that also affect the decision when to modify are measured
 - Plausible?
 - Unrecorded comorbidities
 - Adherence
- May be reasonable to argue that residual confounding expected to be negative
- -> Estimate of harm due to delayed switch conservative...

Key Assumptions (2)

- 2. Adequate variability in exposure
 - "Experimental Treatment Assignment/Positivity"
- Need variability in delay time
- Beyond this- need that covariates do not deterministically predict switch
 - Ex. If subjects with low CD4 always switch, no information about experience of subjects with low CD4 that do not switch

Estimator Comparison: IPTW

Pros

- Well-established for studying the effect of longitudinal treatments
 - Track record in HIV
- Easy to implement

Cons

- Inefficient (high variability)
- Substantial finite sample bias when some covariate/treatment combinations are rare

Estimator Comparison: G-computation

Pro

- More efficient
 - Parametric MLE-based estimation

Cons

- Harder to implement (but doable)
- Requires modeling dependence of all timevarying covariates and survival on the past
 - Getting model specification right can be a challenge!
 - With African cohort data, limited number of longitudinal covariates and time points

A Third Option... Double Robust Estimators

- 1. Augmented-IPTW
- Targeted Maximum Likelihood estimation (TMLE)
- More robust and efficient
- TMLE software for point treatment effects available
- TMLE software for longitudinal effects: under development...pilot coming...

Current Research

- Implementation of above with
 - SA-leDEA, some East Africa cohorts
 - CNICs (North America)
- Application of TMLE to longitudinal data/ dynamic regime estimation
 - Comparison with standard IPTW approaches
- Prediction of viral failure using MEMs data
 - Machine-learning for high dimensional prediction

Current Research

- Analysis of RCT data
 - Methods described can be used to estimate improved "as treated" effect
 - Secondary analysis to look at additional questions than those initially targeted by the trial
 - Ex. DART: RCT comparing clinical vs. CD4 arms
 - How would impact of CD4 monitoring have differed if CD4 monitored at different frequency?
- Design and analysis of studies to investigate community based interventions
 - CRTs/ Combination prevention programs in Africa

References: NPSEM/Counterfactuals/ G-computation formula

- Pearl J. (2009). "Causal inference in statistics: An overview," Statistics Surveys, 3:96—146.
- Pearl J. (2009). <u>Causality: Models Reasoning and</u>
 <u>Inference.</u> Cambridge University Press, Cambridge UK.
- Robins JM. (1987). "A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods". Journal of Chronic Disease, 2:139s-161s.

References: Standard and HA- MSM

- Robins JM. (1999). "Association, causation, and marginal structural models". *Synthese*, 121:151-179.
- Petersen et. al. (2007) "History-Adjusted Marginal Structural Models for Estimating time-varying Effect Modification" AJE
- Van der Laan, et al. (2005). "History-Adjusted Marginal Structural Models and Statically-Optimal Dynamic Treatment Regimens", IJB:

http://www.bepress.com/ijb/vol1/iss1/4

References: Dynamic MSM

- Hernan et. al. (2006) Comparison of dynamic treatment regimes via inverse probability weighting. Basic Clin. Pharm Tox; 98:237–242
- van der Laan & Petersen. (2007) Causal Effect Models for Realistic Individualized Treatment and Intention to Treat Rules. *Int. J. Biostat. 2007* 3.1: 3.
- Robins, et. al. (2008). Estimation and extrapolation of optimal treatment and testing strategies. *Stat Med.* Oct 15;27(23):4678-721

References: Data-adaptive Estimation

- Eric Polley's Website: www.stat.berkeley.edu/ ~ecpolley/
 - Super Learner Test R code and papers
- Van der Laan, Polley and Hubbard (2007)
 Super Learner. SAGMB; 6(25)
- Van der Laan and Dudoit (2003). Unified Cross-Validation Methodology For Selection Among Estimators ...

http://www.bepress.com/ucbbiostat/paper130