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Analysis of repeated measures data with clumping at
zero
Janet A Tooze National Cancer Institute, Bethesda, Maryland, USA, Gary K Grunwald
Department of Preventive Medicine and Biometrics, University of Colorado Health Sciences
Center, Denver, Colorado, USA and Richard H Jones Department of Preventive Medicine
and Biometrics, University of Colorado Health Sciences Center, Denver, Colorado, USA

Longitudinal or repeated measures data with clumping at zero occur in many applications in biometrics,
including health policy research, epidemiology, nutrition, and meteorology. These data exhibit correlation
because they are measured on the same subject over time or because subjects may be considered repeated
measures within a larger unit such as a family. They present special challenges because of the extreme non-
normality of the distributions involved. A model for repeated measures data with clumping at zero, using a
mixed-effects mixed-distribution model with correlated random effects, is presented. The model contains
components to model the probability of a nonzero value and the mean of nonzero values, allowing for
repeated measurements using random effects and allowing for correlation between the two components.
Methods for describing the effect of predictor variables on the probability of nonzero values, on the mean
of nonzero values, and on the overall mean amount are given. This interpretation also applies to the mixed-
distribution model for cross-sectional data. The proposed methods are illustrated with analyses of effects of
several covariates on medical expenditures in 1996 for subjects clustered within households using data
from the Medical Expenditure Panel Survey.

1 Introduction

Data with clumping at zero commonly occur in biometrics. Typically the outcome
variable measures an amount that must be non-negative and may in some cases be zero.
The positive values are generally skewed, often extremely so. Examples include
concentrations of compounds, amounts of health or insurance expenditures, or
amounts of rainfall or pollutants. Distributions of data of this type follow a common
form: there is a spike or discrete probability mass at zero, followed by a bump or ramp
describing positive values. Since the variable of interest describes an amount there is
often interest in estimating the mean amount, including zeros, perhaps in order to
estimate total amounts. For example, in estimating mean per person medical expendi-
tures, it must be taken into account that some subjects will have no expenditures during
the period of interest. From these means, group totals could be estimated.

Various approaches to the problem of data clumped at zero have been proposed, but
most of them have drawbacks.1 If the data are treated as if they come from a normal
distribution, the clumping at zero is ignored as well as the tendency of the positive data
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to be skewed. If a nonparametric approach utilizing the distribution of the ranks is
employed, a large number of ties will exist corresponding to the zero observations, and
the distribution will not be symmetric. In addition, it is not possible to obtain
predictions of the response variable or to estimate totals using a nonparametric
approach. Another approach to analyzing data of this type is to divide the data into
two parts—those data with a value equal to zero and those greater than zero. If only the
data greater than zero are used in the analysis, important information about subjects
with zero response is lost, and estimates of totals will not include zero values. When one
is relying on estimates from such analyses to make policy decisions, inaccurate
conclusions may be made, which may lead to policies that are inadequate or
inappropriate for the population of interest. In addition, this method does not account
for the relationship that may exist between the probability of a nonzero response and
the level of the nonzero response.

The majority of the literature in the area of data that are clumped at zero addresses
the cross-sectional case where the unit of observation is measured once.1 –4 Clumping at
zero may also occur with repeated measures or longitudinal data. In addition to sharing
the problems of cross-sectional data with clumping at zero, the correlation among
measurements on the same unit of observation must be accounted for.

We propose a mixed-distribution model based on the work of Lachenbruch1 ,2 for
cross-sectional data and Grunwald and Jones5 for time series data. The model is also
similar to the ‘two-part model’ used for cross-sectional data in econometrics.3 ,6 All of
these approaches combine models for the probability of occurrence of a nonzero value
(a probit or logit model) and for the probability distribution of the nonzero values (a
lognormal or exponential family distribution). The term ‘mixed-distribution model’
refers to a mixture-of-distributions model that takes the general form

f …y† ˆ
Pr…Y ˆ 0†; if y ˆ 0
‰1 ¡ Pr…Y ˆ 0†Šh…y† if y > 0
0 if y < 0

8
<

: …1†

where h(y) is a probability density de�ned when y > 0.1 ,2 We draw on methods for
modeling non-normal responses with random effects7 to incorporate random unit
(subject) effects into the two parts of the model to account for the correlation due to
multiple observations made on the same subject or unit. We also allow the random unit
effects for the probability of a nonzero value and for the distribution of nonzero values
to be correlated with each other. This allows units with higher rates of occurrence to
also have higher (or lower) mean nonzero responses. Correlation between the random
effects in the two model components is similar to the cross-sectional correlation
between the random normal errors in the two model components of the Heckman,
or Type II Tobit model.8

Section 2 outlines the proposed mixed-distribution model for longitudinal data with
correlated random effects, shows how the methods of generalized linear mixed models
(GLMM) and nonlinear mixed models may be used to �t the model, and addresses the
interpretation of the model parameters in terms of the total amount, including zeros. In
particular, a covariate may affect the mean amount by affecting both the probability of
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occurrence of a nonzero value and also the mean of the nonzero values, and we give an
approach to quantifying and separating these two effects. In Section 3, results from
simulation studies are presented. Section 4 illustra tes application of the mixed-distribu-
tion model for repeated measures data using data from the Medical Expenditure Panel
Survey, and Section 5 provides a summary and discusses areas for further research.

2 Mixed-distribution model with correlated random e¡ects

In this section a mixed-distribution model for repeated measures data with clumping at
zero and correlated random effects is introduced. This model will be referred to as the
correlated mixed-distribution model. An extension of the mixed-distribution model was
chosen to model repeated measures data because it provides a general statistical
modeling approach using existing methodologies (generalized linear and nonlinear
mixed-effects models). The model gives information about the separate occurrence and
nonzero amount components of the model as well as the overall mean. The correlated
mixed-distribution model relates the two components of the model by assuming a
bivariate normal distribution for the random effects.

2.1 Model
For a random variable Yij, which represents the amount of a quantity with observed

value yij for a unit of observation i at time j, let Rij represent the occurrence variable
where

Rij ˆ 0; if Yij ˆ 0
1; if Yij > 0

»

Rij has conditional probabilities

Pr…Rij ˆ rij j q1† ˆ 1 ¡ pij…q1†; if rij ˆ 0
p ij…q1†; if rij ˆ 1

»

where q1 ˆ ‰b0
1 ; u1iŠ0 is a vector of �xed occurrence effects b1 , and random unit

occurrence effect u1 i. We assume a logistic model for occurrence so that

logit…pij…q1†† ˆ X0
1ijb1 ‡ u1i …2†

where X1 ij is a vector of covariates for occurrence.
De�ne Sij ² ‰Yij j Rij ˆ 1Š to be the intensity variable with p.d.f. f …sijjq2† for sij > 0

and mean E…Sijjq2† ˆ ms ij
…q2† where q2 ˆ ‰b0

2 ; u2iŠ0 is a vector of �xed intensity effects b2
and random unit intensity effect u2i. We assume a lognormal model for intensity so that

log…Sij j q2† ¹ N…X0
2ijb2 ‡ u2i; s2

e † …3†
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where X2 ij is a vector of covariates for intensity. We allow the random effects for
occurrence and intensity to be correlated by assuming that

u1i
u2i

µ ¶
¹ BVN

0
0

µ ¶
;

s2
1 rs1s2

rs1s2 s2
2

µ ¶³ ´
: …4†

Under this assumption the subject-speci�c mean intensity is

E…Sij j q2† ˆ exp X0
2ijb2 ‡ u2i ‡ s2

e

2

³ ´
…5†

and the marginal mean intensity is

E…Sij j b2† ˆ exp X0
2ijb2 ‡ s2

2

2
‡ s2

e

2

³ ´
…6†

Note in particular that the values and interpretations of the �xed effects parameters
b2 are identical in (5) and (6) except for the intercept.7

The p.d.f. of Yij is

f …yij j q† ˆ Pr…Rij ˆ 0 j q1†d0…yij† ‡ Pr…Rij ˆ 1 j q1†f …s ij j q2†
ˆ ‰1 ¡ pij…q1†Šd0…yij† ‡ pij…q1†f …sij j q2†

where q ˆ ‰q0
1; q0

2Š and d0…y† is a Dirac delta function9 such that

„ 1
¡1 d0…y†dyij ˆ 1

d0…y† ˆ 0 when yij 6ˆ 0

»

The conditional expectation of Yij is:

E…Yij j q† ˆ pij…q1†mSij
…q2†; …7†

and the conditional variance is:1 0

var…Yij j q† ˆ pij…q1†var…Sij j q2† ‡ …pij…q1††‰1 ¡ …pij…q1††ŠmSij
…q2†2 :

The contribution to the likelihood for the ith subject (i ˆ 1, . . . , m) is

Li…b1 ; b2 ; s1; s2 ; se; r; yi1; . . . ; yini
†

ˆ
…

u1 i

…

u2i

Yn1

jˆ1

f …yij j b1; b2 ; u1i; u2i†f …u1i; u2i j s1; s2 ; se; r†du1idu2i:
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The likelihood is then

L…b1 ; b2 ; s1 ; s2; se; r† ˆ
Ym

iˆ1

…

u1 i

…

u2 i

Yni

jˆ1

f …yij j b1 ; b2; u1i; u2i†f …u1i; u2i js1 ; s2; se; r†du1idu2i

ˆ
Ym

iˆ1

…

u1i

…

u2i

Yni

jˆ1

‰1 ¡ pij…b1; u1i†Š1¡rij ‰pij…b1 ; u1i†Šrij

£ f …sij j b2 ; u2i†f …u1i; u2i j s1 ; s2 ; se; r†du1idu2i …8†

In the correlated mixed-distribution model, it is not assumed that the random effects
are independent and, as a result, the components of (8) for occurrence and intensity
contain a common parameter, r. Therefore, the two components of the likelihood
cannot be maximized separately as in Lachenbruch2 or Grunwald and Jones.5 In model
(8) it is also possible for b1 and b2 to share common parameters. However, because b1
and b2 are on different scales, doing so may lead to parameter estimates that are
dif�cult to interpret.

With the assumptions that u1 i and u2 i are independent, i.e. that r ˆ 0, the likelihood
may be factored into two parts that correspond to the occurrence process and the
intensity process:

L…b1; b2; s1 ; s2 ; se† ˆ
Ym

iˆ1

…

u1i

Yni

jˆ1

‰1 ¡ pij…q1†Š1¡rij ‰p ij…q1†Šrijf …u1i j s1†du1i

£
Ym

iˆ1

…

u2i

Yni

jˆ1

f …sij j q2†f …u2i j s2; se†du2i

The �rst component is the likelihood for the occurrence process, LR…b1; s1†, and the
second component is the likelihood for the intensity process, LS…b2; s2; se†. With the
further assumption that q1 has no parameters in common with q2 , L…b1 ; b2 ; s1 ; s2; se† is
maximized when each component is maximized separately. When r ˆ 0, the model is
referred to as the uncorrelated mixed-distribution model.

2.2 Model ¢tting
If u1 i and u2 i are assumed to be independent, then maximum likelihood methods may

be used to maximize both components of the likelihood separately. Wol�nger and
O’Connell’s pseudo-likelihood approach,1 1 Breslow and Clayton’s penalized quasi-
likelihood approach,1 2 or optimization of the likelihood approximated by adaptive
Gaussian quadrature,1 3 may be used to maximize LR…b1 ; s1† and LS…b2 ; s2 ; se† sepa-
rately. The overall likelihood L…b1 ; b2 ; s1; s2; se† is the product of LR…b1 ; s1† and
LS…b2 ; s2 ; se†, and the maximum of L…b1; b2 ; s1 ; s2 ; se† occurs when LR…b1 ; s1† and
LS…b2 ; s2 ; se† are maximized separately. If the models contain no random effects, this
allows the mixed-distribution model to be estimated using standard software of
generalized linear models1 4 . When correlated random effects are present these special
cases are useful for obtaining initia l estimates when optimizing the correlated model
likelihood (8).
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The full likelihood (8) for the correlated mixed-distribution model can be maximized
using quasi-Newton optimization of a likelihood approximated by adaptive Gaussian
quadrature.1 3 This method is implemented in the SAS PROC NLMIXED procedure (SAS
Institute, Cary, NC, Version 8). This procedure allows the user to specify a general
likelihood, in particular one of the form (8), and also allows great �exibility for
speci�cation of the distribution of Sij. We assume a logistic-lognormal-normal model,
where ‘logistic’ refers to the modeling of the occurrence part of the model (2), ‘lognormal’
to the modeling of the intensity part of the model (3), and ‘normal’ to the assumption that
the random effects are assumed to have a bivariate normal distribution (4).

To �t this model we developed a SAS macro (MIXCORR, available from the
authors) that calls PROC GENMOD and PROC NLMIXED. The user must specify the
dataset, the outcome variable, covariates for the binomial component of the model and
for the lognormal component of the model, and the variable that identi�es the random
unit. The macro estimates a binomial model for the occurrence and a lognormal model
for the intensity (both without random effects) using PROC GENMOD. These
parameter estimates are used as starting values in estimating the separate occurrence
and intensity models with uncorrelated random effects using SAS PROC NLMIXED.
Finally, the parameter estimates from the two uncorrelated random effects models are
used as starting values for the mixed-distribution model with correlated random effects
in a �nal PROC NLMIXED run. The starting value for the covariance of the random
effects is calculated using the estimates of s2

1 and s2
2 and r ˆ 0.5.

2.3 Model checking
The model assumes normality and constant variance of random effects, m1i and m2i,

and the residuals of the intensity distribution. Standard regression diagnostics may be
used to assess the goodness of �t of the model. Quantile–quantile plots can be
constructed for ûu1i and ûu2i, and for the residuals for the intensity variable, given by
ln…s ij† ¡ …X0

2ijb2 ‡ u2i†. If the normality assumption is not violated, the data will fall in a
straight line. A plot of the residuals for the intensity distribution versus �tted values will
indicate if the assumption of constant variance is violated. A nonrandom pattern
indicates departure from this assumption.

2.4 Interpretation of Fixed-E¡ects Parameters
The separate effects of the �xed-effect occurrence and intensity parameters, b1 and

b2 , have the same interpretations for occurrence and intensity as they would have if the
two components of the model were �t separately (e.g., logistic and lognormal regres-
sion). If a variable is used in both the occurrence and intensity models, however, there
may be interest in quantifying the overall effect of the variable on the total amount Y.
This can be carried out as follows.

Assume that Z is a covariate in both the occurrence and intensity models (2) and (3),
and that X1 and X2 are vectors of the other occurrence and intensity covariates,
respectively. For simplicity we suppress the subscripts i and j. Then from (2) and (3),

Pr…R ˆ 1 j q1† ˆ exp…X0
1b1 ‡ a1z ‡ u1†

1 ‡ exp…X0
1b1 ‡ a1z ‡ u1† …9†
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and

E…S j q2† ˆ exp X0
2b2 ‡ a2z ‡ u2 ‡ s2

e

2

³ ´
: …10†

Then the ratio of mean amount of Y when Z ˆ z ‡ 1 to that when Z ˆ z is

E…Y j Z ˆ z ‡ 1; q†
E…Y j Z ˆ z; q† ˆ Pr…R ˆ 1 j Z ˆ z ‡ 1; q1†

Pr…R ˆ 1 j Z ˆ z; q1†

µ ¶
E…S j Z ˆ z ‡ 1; q2†

E…S j Z ˆ z; q2†

µ ¶
…11†

From (10) the second term in (11) is exp…a2†. In general the �rst term in (11) depends on
X0

1b1 ‡ u1 as well as on a1 and z. However, some insight can be gained by substituting
(9) into (11) and noting that the function

exp…k ‡ a1†
1 ‡ exp…k ‡ a1†

³ ´¿
exp…k†

1 ‡ exp…k†

³ ´
! 1 as k ! 1

and

exp…k ‡ a1†
1 ‡ exp…k ‡ a1†

³ ´¿
exp…k†

1 ‡ exp…k†

³ ´
! exp…a1† as k ! ¡1:

Thus in (11),

E…Y j Z ˆ z ‡ 1; q†
E…Y j Z ˆ z; q† º exp…a2† when X0

1b1 ‡ u1 is large and positive
exp…a1†exp…a2† when X0

1b1 ‡ u1 is large and negative

»

When X0
1b1 ‡ u1 is large and positive, Pr(R ˆ 1) º 1 so there are few zeros,

E(Y) º E(S), and the effect of Z on Y is mainly via the mean of the nonzero values.
When X0

1b1 ‡ u1 is large and negative, the ratio of means in (11) is a combination
of occurrence and intensity effects. The term Pr…R ˆ 1 j Z ˆ z ‡ 1; q1†=Pr…R ˆ 1 j
Z ˆ z; q1† is the risk ratio for occurrence per one unit change in Z. When Pr
(R ˆ 1) º 0, as when X0

1b1 ‡ u1 is large and negative, this term is close to the odds
ratio for occurrence per one unit change in Z, which is exp…a1† as in the usual logistic
regression interpretation. Special cases of all of these results hold if Z enters into only
the occurrence model …a2 ˆ 0† or only into the intensity model …a1 ˆ 0†.

In practice, neither of the limiting cases of (11) may apply. In order to determine the
range of the effect of a common covariate Z on Y, the ratio of the means in (11) can be
computed for the minimum, maximum, and median values of Z, and for the minimum
and maximum values of the other covariates. The limit exp…a1†exp…a2† in (11) provides
an upper (lower) limit for the combined effect of Z on Y when a1 is positive (negative).
Note that these results also hold when no random effects are present and thus provide
an interpretation of the combined effect of a variable in a mixed-distribution regression
model.
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2.5 Interpretation of random e¡ects
The random effects in the correlated mixed-distribution model, u1 i and u2 i, account

for unobserved heterogeneity among units. In the occurrence part of the model, the
random intercept on the link (e.g., logit) scale, b10i ˆ b10 ‡ u1i, allows some units to
have a consistently low or high probability of a nonzero response. The variance of the
random effect, s2

1 , indicates the variability of the probability of a nonzero response
among units with similar covariate patterns. The random intercept, b20i ˆ b20 ‡ u2i, in
the intensity part of the model, allows some units to have consistently low or high mean
of nonzero values. If s2

2 is large it indicates that there is a great deal of heterogeneity of
mean nonzero responses among units with similar covariate patterns.

Allowing correlation of the random effects u1 i and u2 i allows units with consistently
high occurrence probability to have consistently high (low) mean of nonzero values
when the correlation between u1 i and u2 i, r, is positive (negative).

3 Simulation results

A simulation study was performed to study the performance of the parameter estimates
from Section 2.2. Using a method adapted from Zeger and Karim,1 5 data were
simulated from the logistic-lognormal-normal mixed-distribution model with

pij…q1† ˆ b10 ‡ b11tj ‡ b12xi ‡ b13xitj ‡ u1i

log…Sij j u2i† ¹ N…b20 ‡ b21tj ‡ b22xi ‡ u2i; s2
e †;

and correlated random effects u1 i and u2 i as in (4).
One hundred datasets with m ˆ 100 units (clusters or subjects) of size ni ˆ 7 were

generated using each of the two sets of parameter values shown in Table 1. The number
of quadrature points speci�ed in NLMIXED was held to the maximum number

Table 1 Simulation results for the correlated mixed-distribution model
using m ˆ 100 simulated datasets from the model given in Section 3 with
each of the two sets of true parameter values

True value Mean of 100
estimates

True value Mean of 100
estimates

b10 2.50 2.51 b10 2.50 2.58
b11 0.10 0.10 b11 0.10 0.09
b12 ¡1.00 ¡1.04 b12 ¡1.00 ¡1.13
b13 0.05 0.05 b13 0.05 0.06
s2

1 1.00 0.97 s2
1 10.00 9.98

b20 4.00 4.00 b20 4.00 3.98
b21 0.50 0.50 b21 0.50 0.50
b22 1.50 1.49 b22 1.50 1.39
s2

2 1.44 1.41 s2
2 14.40 14.33

s2
e 1.00 1.00 s2

e 1.00 1.01
rs1s2 0.60 0.58 rs1s2 6.00 6.15
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determined adaptively, seven. The estimates from NLMIXED appear to be unbiased
(Table 1).

4 Application

The Medical Expenditure Panel Survey (MEPS) is a longitudinal survey conducted by
the Agency for Healthcare Research and Quality (AHRQ) and the National Center for
Health Statistics (NCHS). MEPS data may be used to obtain estimates of health care
use, medical expenditures, and insurance coverage in the United States. In the House-
hold Component of the MEPS, data were collected on health care use and expenditures,
demographic characteristics, medical conditions, health status, and insurance coverage
on 22 601 persons in 10 596 households. Although the expenditure and use data are
collected longitudinally, they are aggregated by year; only data for 1996 were analyzed.
However, due to the multiple subjects within households, these data exhibit clustering,
and the techniques described in this paper are applicable with household as the unit of
repeated measurement. Although the MEPS is a representative sample and weighted
and unweighted frequencies are provided in order to provide data analysts the ability to
make population-level estimates, the analysis presented in this paper was not weighted.

For this analysis, the impact of age, sex, health rating, the presence of a medical
condition, census region (Northeast, Midwest, South, West), the presence of physical
limitations, and insurance status on total medical expenditures in 1996 were modeled.
The health rating was assessed on a scale of 1 to 5 with 1 corresponding to ‘Excellent’
and 5 corresponding to ‘Poor’. Whether or not a subject had a medical condition was
based on household-reported medical conditions collected in 1996. A subject was
considered to have a limitation if they were found to have any type of limitation with
activities of daily living (ADLs: including bathing, dressing, and getting around the
house), instrumental activities of daily living (IADLs: including using the telephone,
paying bills, taking medications, preparing light meals, doing laundry, and going
shopping), physical limitations (such as walking, climbing stairs, grasping objects,
reaching overhead, lifting, bending or stooping, and standing for long periods of time),
any limitation that impeded their work, housework, or school activities, or vision or
hearing limitations. The presence or absence of any insurance (including coverage under
CHAMPUS=CHAMPVA, Medicare, Medicaid or other public hospital=physician or
private hospital=physician insurance) was reported for each month in 1996. The
portion of the year that the respondent was insured was used as a covariate in the
analysis. There were from one to fourteen persons in a family; the median number of
family members was three. Owing to missing data on the limitation, health rating
variable, insurance status, region, age, or sex, 746 respondents were excluded from the
analysis.

Both models with and without correlated random effects were �t using the
MIXCORR macro and a backwards selection procedure. In all cases the model with
correlated random effects was found to be better than the model with uncorrelated
random effects (based on a likelihood ratio test and AIC). A model with all covariates
was the best of the models considered. Parameter estimates from the models with
uncorrelated and correlated random effects are given in Table 2.
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Checks of the goodness of �t of the model, as described in Section 2.3, were
performed. The quantile–quantile plots for the random effects showed no indication
of departure from a straight line. Plots of residuals versus �tted values for the lognormal
intensity model did not show any indications of heteroscedasticity of variance.

The separate and combined effects of the variables included in the model are
presented in Table 3. In this table each column is referenced by a lower case letter.
Recall that from (11) the ratio of the overall mean for a one unit change in a common
covariate Z may be represented as follows:

E…Y j Z ˆ z ‡ 1†
E…Y j Z ˆ z†

µ ¶

"
…k†

ˆ exp…a2†
"
…j†

exp…a1†
"

…h†

Pr…R ˆ 0 j Z ˆ z ‡ 1†
Pr…R ˆ 0 j Z ˆ z†

µ ¶

"
…g†|‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚}

…i†

…12†

Table 2 Parameter estimates and model comparisons for � nal model � t to MEPS data

Parameter Uncorrelated Correlated

Estimate (S.E.) p > j t j Estimate (S.E) p > j t j

Occurrence (Logistic)
Intercept ¡2.8292(0.1129) < 0.0001 ¡2.8131(0.1129) < 0.0001
Medical condition (N ˆ 0=Y ˆ 1) 3.0342(0.0724) < 0.0001 2.9792(0.0717) < 0.0001
Limitations (N ˆ 0=Y ˆ 1) 0.5574(0.0894) < 0.0001 0.5498(0.0897) < 0.0001
Portion of year insured (0–1) 1.7152(0.0680) < 0.0001 1.7262(0.0679) < 0.0001
Age (years) 0.0051(0.0014) 0.0003 0.0040(0.0014) 0.0043
Health rating (1–5) 0.1782(0.0292) < 0.0001 0.2181(0.0296) < 0.0001
Sex (M ˆ0=F ˆ 1) 0.6122(0.0509) < 0.0001 0.6318(0.0510) < 0.0001
Region 1 (Northeast) 0.5173(0.0881) < 0.0001 0.5184(0.0884) < 0.0001
Region 2 (Midwest) 0.5547(0.0867) < 0.0001 0.5465(0.0869) < 0.0001
Region 3 (South) 0.1359(0.0724) 0.0606 0.1236(0.0726) 0.0886
s2

1 1.1502(0.1140) < 0.0001 1.1852(0.1149) < 0.0001

Intensity (Lognormal)

Intercept 3.0459(0.0619) < 0.0001 2.8653(0.0641) < 0.0001
Medical condition (N ˆ 0=Y ˆ 1) 1.0485(0.0473) < 0.0001 1.1503(0.0482) < 0.0001
Limitations (N ˆ 0=Y ˆ 1) 0.5681(0.0299) < 0.0001 0.5743(0.0299) < 0.0001
Portion of year insured (0–1) 0.8702(0.0347) < 0.0001 0.9047(0.0348) < 0.0001
Age (years) 0.0189(0.0005) < 0.0001 0.0187(0.0005) < 0.0001
Health rating (1–5) 0.2609(0.0111) < 0.0001 0.2697(0.0112) < 0.0001
Sex (M ˆ0=F ˆ 1) 0.2235(0.0206) < 0.0001 0.2366(0.0206) < 0.0001
Region 1 (Northeast) 0.1188(0.0355) 0.0008 0.1237(0.0356) 0.0005
Region 2 (Midwest) 0.1314(0.0341) 0.0001 0.1383(0.0342) < 0.0001
Region 3 (South) 0.0126(0.0313) 0.6878 0.0145(0.0313) 0.6435
s2

e 1.6959(0.0239) < 0.0001 1.6960(0.0238) < 0.0001
s2

2 0.2368(0.0190) < 0.0001 0.2468(0.0192) < 0.0001
rs1s2 — — 0.3523(0.0347) < 0.0001

(r ˆ 0.6514)

Name Value Value Difference in ¡2 log
likelihood

AIC 293 107.6 293 002.0
¡2 ll 293 061.6 292 954.0 107.59

(p < 0.0001)
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The variable listed in the �rst column of Table 3 is z in the equation. Because the
values of the other variables in the model impact the ratio of probabilities (g), various
scenarios for values of the other variables are given in columns (a)–(f). In general, the
‘low’ condition, in which the other covariates in the model are at their lowest value, is
given on the �rst row for the variable, and the ‘high’ condition, in which the other
covariates in the model are at their highest value, is given on the following row.

Presence of a medical condition was associated with increased mean medical
expenditure in 1996. The increase ranged from 3.6 times (for subjects with otherwise
‘high risk’ covariate patterns) to 25.1 times (for subjects with otherwise ‘low risk’
covariate patterns). Differences in this effect were due to differences in the effect of a
medical condition on the probability of some medical expenditure. The mean medical
expenditure for respondents with a physical limitation was from 1.8 to almost 3 times
the mean of respondents without physical limitations. Having insurance for the entire
year was associated with increased mean medical expenditures from 2.5 to 10.2 times
that of persons who did not have insurance for the entire year, with the larger increase
for patients with an otherwise low risk covariate pattern. A one unit increase in the
health rating scale, which actually corresponded to a decline in health, increased the
mean amount of health expenditures by 1.3 to 1.6 times. The difference between a male
subject and a similar female increased the mean amount of expenditure from 1.3 to 2.2
times. Lastly, living in the Midwest increased the mean amount of expenditure from 1.2
to 1.9 times that of those living in the West. In none of these cases was there a uniform
dominance of the occurrence effect over the intensity effect (or vice versa) on total
expenditure.

The signi�cant random effects variance for the occurrence shows that after account-
ing for covariate differences among subjects, some families have a greater probability of
seeking medical care than others. Similarly, the highly signi�cant random effect
variance for intensity indicates that after accounting for covariate differences, some
families have consistently higher (or lower) expenditures when they do seek medical
care than the norm. The positive correlation between the occurrence and intensity
random effects indicates that after accounting for covariate differences, families with a
greater tendency to seek medical care tended also to report a higher mean amount of
positive expenditures.

5 Discussion

We have proposed a model for longitudinal or repeated measures data with clumping at
zero, using a mixed-effects, mixed-distribution model. The model includes features of
the cross-sectional statistica l models of Lachenbruch,1 ,2 the cross-sectional econometric
models of Heckman,8 Duan et al.,3 and Manning et al.,6 and the time series model of
Grunwald and Jones.5 In addition, by including correlated random errors, the occur-
rence and intensity parts of the model are linked. An interpretation of �xed-effects
parameters was given, which also applies to mixed-distribution models for cross-
sectional data.

We have shown how the proposed model may be estimated using standard software
for non-linear and generalized linear mixed models such as SAS PROC NLMIXED.
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Simulations indicate that this method of estimation gives unbiased results for both �xed
and random effects. We chose this method due to its good performance on simulation
studies, and because it can be easily implemented in SAS. However, other methods of
model �tting appropriate for GLMMs and nonlinear mixed-effects models1 3 potentially
could be used to �t our model, including penalized quasi-likelihood1 2 or a Monte
Carlo method within a Bayesian framework.1 5

We used the approach to model the association between several covariates including
demographic characteristics, insurance coverage, and health status on health care
expenditures of subjects, using random effects to account for clustering of subjects
into families. We noted strong �xed effects of most covariates on total amount of
expenditure, through both the probability of nonzero expenditure and the mean of
nonzero expenditures. We also noted strong random effects due to clustering of subjects
within families. Further, adjusting for covariates, there was a tendency for subjects in
families that had a higher probability of some health care expenditure to also have
higher mean nonzero expenditure.

The model proposed in this paper is appropriate for data with true zeros. Although
this method may appear to be applicable to the case where data are left censored or
missing, a zero in these cases is not a real zero and should not be treated as such when
calculating the mean amount.

One byproduct of our work is a method for interpreting effects of covariates.
Estimation of the mean amount, including the probability of zeros, is in our view
one of the main reasons for developing models for the combined response when zeros
are included. Totals, such as total expenditure for a group over a period of time
including the fact that some subjects will have no expenditures, can be estimated from
these means. The method we propose gives information about the effect of a covariate
on this mean amount and how that effect arises as a combination of the covariate’s
effect on occurrence probability and on mean nonzero amount. The methods we
propose are also applicable in the cross-sectional case.

Many modi�cations and extensions of our methods are possible. Some types of data
with clumping at zero may exhibit serial correlation, particularly if repeated measure-
ments are made longitudinally. One possible extension of the model described in this
paper is to a transition model or an autoregressive error structure to account for the
type of autoregressive pattern that longitudinal data might exhibit. Another direction
for extension would be toward the Heckman8 econometric model, which uses corre-
lated random errors to allow the probability of occurrence and the mean intensity to be
related in a cross-sectional model. We have adapted that approach to include correlated
random unit effects, our main interest. Our model could be modi�ed to include
correlated within-subject random components as well. Such a model could again be
estimated using standard methods for GLMMs and SAS PROC NLMIXED. Further
extensions might include both a transition component and a random effect. Other
extensions of the correlation structure, such as a stochastic parameter model including
random slopes as well as random intercepts, would be possible as well. However, as the
correlation structures become more complex and additional parameters are added to
the model, the model becomes less parsimonious and more dif�cult to �t.

In this paper we have assumed that the nonzero amounts follow a lognormal
distribution, as in the two-part models of Duan et al.3 This distribution is appropriate
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for skewed, positive, continuous data and is frequently used for analysis of cost data.
The gamma distribution would be an alternative choice for the intensity distribution,
as in Grunwald and Jones5 and Hyndman and Grunwald.1 6 The Weibull distribution
could also be chosen. All of these are distributions on (0, 1) and can be accom-
modated by the model. Because all of these distributions are capable of modeling a
variety of positively skewed shapes, the exact form assumed for the errors would not
be expected to have a substantial effect on the estimated model parameters or
inferences. However, if quantiles of the nonzero amounts are to be estimated (as in
Grunwald and Jones5 ), more care is needed to specify and check the form of the error
distribution. A nonparametric density estimate1 7 could also be considered for estimat-
ing the shape of the error distribution. This approach potentially could provide better
estimation of quantiles, although sparse data in the tails of the highly skewed
distributions may cause dif�culties. We are not aware of any applications of nonpara-
metric density estimation to data with clumping. Some care would be needed so that
the estimates were applied only to the nonzero data rather than smoothing across the
zeros as well. It is unclear how multiple covariates and random effects could be
included.

In our model, an intensity model appropriate for yi> 0 was chosen so that it may
be assumed that zeros only arise when ri ˆ 0. Otherwise, it is unknown whether the
zeros arise from the distribution for the occurrence component of the model, or from
the intensity component of the model. An example of a mixture of distributions that
contains both type of zeros is a Binomial–Poisson mixture. Lambert1 8 has proposed
zero-in�ated Poisson (ZIP) regression for handling data that arise from this mixture
of distributions. Dunson and Haseman1 9 extended ZIP regression to a transition
model for longitudinal data with an application to carcinogenicity in animal studies.
Hall2 0 adapted Lambert’s methodology to an upper-bounded count situation by
using a zero-in�ated binomial model. He also incorporated random effects into the
ZIP regression model to accommodate repeated measures data. Our model was
developed for the case where the nonzero data arise from a continuous distribution.
The Poisson would not be an appropriate distribution for the intensity variable
for the medical expenditure data described in this paper, as these data are not
independent counts.

In the econometric literature there has been an increased interest in semiparametric
approaches to �tting data with clumping at zero.2 1 ,2 2 In addition, Hyndman and
Grunwald1 6 have developed a generalized additive mixed-distribution model with a
�rst-order Markov structure for time series data. Another extension to the model
described in this paper could involve a semiparametric modeling approach.

Because the correlated mixed-distribution model is a nonlinear model that incorpo-
rates the models and methods of GLMMs, as the methodology advances in the area of
nonlinear models and GLMMs, especially with regard to model �tting and diagnostics,
the methodology of the correlated mixed-distribution model will be advanced as well.
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