Searching for Latent Patterns in Longitudinal Data: How Well Do Latent Growth Mixture Models Work?

Kevin L. Delucchi, PhD University of California, San Francisco

Acknowledgements

- Alan Bostrom, Ph.D.
- Connie Weisner, DPH
- Alcohol Research Group
- Sharon Hall, Ph.D.
- SF Treatment Research Center

Latent Constructs

- Common in social sciences
- Depression, affiliation, social pressure, bigfive personality dimensions
- Factor analysis and structural equation modeling
- Growth mixture modeling

Individual Trajectories

Known Group Trajectories

Individual Trajectories

Latent Trajectories

Part 1: Motivating Example

Trajectories of Alcohol Consumption over 5 Years

Delucchi, K. L., Matzger, H., & Weisner, C. (2004). Dependent and problem drinking over five years: A latent class growth analysis. *Drug and Alcohol Dependence*, *74*, 235-244.

Research Goals

- Understanding the long-term course of problematic drinking
- Common patterns of drinking?
- Covariates related to those patterns?

Study Design

- Longitudinal survey of dependent and problem alcohol drinkers
- Data from 5 years (4 assessments)
- \blacksquare N = 1094 (complete data)
- Outcome: N drinks per year

First 100 Cases

Known Groups

- Mixed-effects models
 - Hierarchical linear models
 - Random effects
- Estimate effects for sex, treatment condition, etc.

Growth Mixture ModelsLatent Class Growth Models

- Random effects models in K subgroups
- Finite mixture modeling
- Set of observed trajectories → smaller set of latent trajectories
- Improvement on "classify-then-analyze"
- Measures of model fit for model selection
- Software: Proc Traj, MPlus

Outcome Modeled

- Number of drinks of alcohol in prior year
- Log-10 transformed
- Fit models with 2 to 6 latent groupings
- Added covariates

Number of Classes	BIC
2	-6558.3
3	-6432.5
4	-6328.7
5	-6261.7
6	-6496.1

Results

Five class model produced best fit

- Early Quitters (N=88)
- Light/Non-drinkers (N=76)
- Gradual Improvers (N=129)
- Moderate Drinkers (N=229)
- Heavy Drinkers (N=572)

CAPS 20 November 2009

16

Mean Posterior Probabilities

	Early	Non-	Gradual	Mod.	Heavy
_	Quit	Drinkers	Improve	Drinkers	Drinkers
Group 1	.96	.01	.01	.01	.00
Group 2	.00	.96	.00	.01	.00
Group 3	.01	.00	.89	.02	.00
Group 4	.03	.03	.07	.82	.10
Group 5	.00	.00	.03	.15	.90

Percent No Drinks Prior Year

	Baseline	Year 1	Year 3	Year 5
Early Quit	0	97	100	77
Non-Drink	67	76	66	66
Improve	0	13	48	74
Moderate	1	16	13	5
Heavy	0	2	1	1

Part 2:

How well do growth mixture models work?

Growth Mixture Modeling

- Mixture modeling; Newcomb, 1886,
 Pearson, 1884
- Muthén & Shedden (1999)
- Nagin: latent class mixture modeling

Prior Research

- Eggleston, et al. (2004) length of follow-up effecting trajectory shapes
- Jackson & Sher (2006) effects of number of assessments
- Henson, et al. (2007) fit statistics not accurate for small N (< 500)
- Nylund, et al. (2007) determining number of classes
- Lubke & Muthén (2007) FMM poor capture of classes without covariates

Current Project

- How well do growth mixture models capture group membership and model parameters?
- Simulations
- Two-group, longitudinal design
- Percent correctly classified, estimates of intercepts and slopes

Initial Conditions Simulated

- 112 cell-design (2x2x2x2x7)
 - 2 sample sizes (300 and 900)
 - 2 intercept effect sizes
 - 2 slope effect sizes
 - 2 levels of residual variance
 - 7 levels of sample imbalance

- Intercept means -- 2 levels: $(\mu_{I1}, \mu_{I2}) = (0,0.5)$ or (0,1)
- Slope means -- 2 levels: $(\mu_{S1}, \mu_{S2}) = (0.25, -0.25)$ or (0.5, -0.5)
- Residual variance -- 2 levels: $\sigma_R^2 = 0.1$ or 0.5.
- Imbalance -- 7 levels: (*N*1, *N*2) = (480,420), (540,360), (600,300), (660,240), (720,180), (780,120), (840,60)

Data Model

Random slope and intercept selected from $N(\mu_i, \Sigma)$

$$\mu_{\mathrm{i}} = \begin{bmatrix} \mu_{Ii} \\ \mu_{Si} \end{bmatrix}$$

$$\mu_{i} = \begin{bmatrix} \mu_{Ii} \\ \mu_{Si} \end{bmatrix} \qquad \sum \begin{bmatrix} \sigma^{2}_{I} & \sigma_{IS} \\ \sigma_{IS} & \sigma^{2}_{S} \end{bmatrix}$$

After sampling, 4 data points generated;

$$Y_i = I + (i-1)S + R_i$$
 for $i = 1,...,4$

where R_i is $\sigma_R \varepsilon_i$ with s_R^2 being a constant residual variance and $e_i \sim N(0,1)$.

- Data generated in SAS
- Analysis using Mplus (v4.2)
- Data summarized using SAS

```
TITLE: ANALYSIS 1;
 DATA:
           FILE is C:\Delucchi\MPlus\Data\Sample1.txt;
 VARIABLE: NAMES are Group Subject Y1-Y4;
        CLASSES = C(2);
        USEVARIABLES = Y1-Y4;
 ANALYSIS: TYPE = MIXTURE;
        STARTS = 100, 10;
 MODEL: %OVERALL%
   i s|y1@0 y2@1 y3@2 Y4@3;
   [c#1] (alpha);
   %c#2%
 SAVEDATA: FILE = C:\Delucchi\MPlus\Data\File1.txt;
         RESULTS = C:\Delucchi\MPlus\Data\Analysis1.txt;
         SAVE = CPROBABILITIES;
 OUTPUT:
 model constraint: alpha>0;
```

Results from 14 Conditions

- Residual var = 0.5
- N=900
- Largest and smallest effects
- All 7 levels of imbalance

All Four Conditions

Mean Estimated Intercept by Class and Effect Size

Mean Estimated Slope by Class and Effect Size

Revised Simulations

- Ns = 900 (300, 600) and 1800 (600, 1200)
- Residual variance set to 0.1
- Intercepts at 0 and 1
- Slopes at -0.5 and 0.5
- Effect size from 0.2 to 2.2

Intercept and Slope Effect Size

Percent of Group Correctly Classified by Intercept, Slope Effect Size

Residual variance = 0.1, with continuous covariate N(5,5) in Group 1, N(15,5) in Group 2

Mean Estimate of Intercept Means by Intercept, Slope Effect Size

Residual variance = 0.1, with continuous covariate N(5,5) in Group 1, N(15,5) in Group 2

Mean Estimate of Slope Means by Intercept, Slope Effect Size

Residual variance = 0.1, with continuous covariate N(5,5) in Group 1, N(15,5) in Group 2

Conclusions

- GMMs potentially very informative
- Currently seen mainly in drug/alcohol and developmental studies – esp. criminology
- Simulation results raise concerns
 - Poor estimation of group membership
 - Model parameters require large effect sizes

