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Latent Constructs

m Common in social sciences

m Depression, affiliation, social pressure, big-
five personality dimensions

m Factor analysis and structural equation
modeling

= Growth mixture modeling

CAPS 20 November 2009 3



Individual Trajectories

40 -

30 -

20

Outcome

10 -

/\

0 -

Time

CAPS 20 November 2009



Known Group Trajectories
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Latent Trajectories
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Part 1:
Motivating Example

Trajectories of Alcohol Consumption
over 5 Years

Delucchi, K. L., Matzger, H., & Weisner, C. (2004). Dependent and
problem drinking over five years: A latent class growth analysis.
Drug and Alcohol Dependence, 74, 235-244.




Research Goals

= Understanding the long-term course of
problematic drinking

s Common patterns of drinking?

= Covariates related to those patterns?
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Study Design

= Longitudinal survey of dependent and
problem alcohol drinkers

m Data from 5 years (4 assessments)
m N = 1094 (complete data)
m Outcome: N drinks per year
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Known Groups

= Mixed-effects models
— Hierarchical linear models
— Random effects

m Estimate effects for sex, treatment
condition, etc.
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Growth Mixture Models
Latent Class Growth Models

= Random effec
= Finite mixture

's models in K subgroups
modeling

m Set of observed trajectories — smaller set
of latent trajectories

= Improvement

on “classify-then-analyze”

m Measures of model fit for model selection
m Software: Proc Traj, MPlus
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Outcome Modeled

= Number of drinks of alcohol in prior year
= Log-10 transformed

m Fit models with 2 to 6 latent groupings

m Added covariates
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Number of Classes =1 @
2 -6558.3
-6432.5
4 -6328.7
5 -6261.7
6 -6496.1
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Results

Five class model produced best fit

— Early Quitters (N=88)

— Light/Non-drinkers (N=76)
— Gradual Improvers (N=129)
— Moderate Drinkers (N=229)
— Heavy Drinkers (N=572)
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Early Quitters — Non-Drinkers
Gradual Improvers — Moderate Drinkers
— Heavy Drinkers
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Non/Light Gradual

Year 5
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Mean Posterior Probabilities

Early Non- Gradual Mod. Heavy
Quit Drinkers Improve Drinkers Drinkers

Group 1 .96 .01 .01 .01 .00
Group 2 .00 .96 .00 .01 .00
Group 3 .01 .00 .89 .02 .00
Group 4 .03 .03 .07 .82 .10
Group 5 .00 .00 .03 .15 Kelo
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Percent No Drinks Prior Year

Baseline Year 1 Year 3 Year 5
Early Quit 0 97 100 77
Non-Drink 6/ 76 66 66
Improve 0 13 48 /74
Moderate | 16 13 5
Heavy 0 2 1 1
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Early Quitters — Non-Drinkers
Gradual Improvers — Moderate drinkers
— Heavy Drinkers
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Part 2:

How well do growth mixture
models work?
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Single Density Plot
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Three Normal Distributions
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Growth Mixture Modeling

= Mixture modeling; Newcomb, 1886,
Pearson, 1884

= Muthéen & Shedden (1999)
= Nagin: latent class mixture modeling
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Prior Research

Eggleston, et al. (2004) — length of follow-up
effecting trajectory shapes

Jackson & Sher (2006) — effects of number of
assessments

Henson, et al. (2007) fit statistics not accurate for
small N (< 500)

Nylund, et al. (2007) - determining number of
classes

Lubke & Muthén (2007) - FMM poor capture of
classes without covariates
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Current Project

= How well do growth mixture models capture
group membership and model parameters?

= Simulations
= Two-group, longitudinal design

m Percent correctly classified, estimates of
intercepts and slopes
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Initial Conditions Simulated

112 cell-design (2x2x2x2x7)
2 sample sizes (300 and 900)
2 intercept effect sizes
2 slope effect sizes
2 levels of residual variance
/ levels of sample imbalance
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m [ntercept means -- 2 levels: (M, M) = (0,0.5)
or (0,1)

m Slope means -- 2 levels: (Msy,Msy) = (0.25, -
0.25) or (0.5, -0.5)

» Residual variance -- 2 levels: o%; = 0.1 or 0.5.

m Imbalance -- 7 levels: (M, A2) = (480,420),
(540,360), (600,300), (660,240), (720,180),
(780,120), (840,60)
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Data Model

Random slope and intercept selected from
N(I"Iil Z)

CAPS 20 November 2009 32



After sampling, 4 data points generated;

Y =TI+ (£1)S+ R fori=1,..,4

where R is oz& with s%; being a constant
residual variance and e, ~ N(0,1).
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m Data generated in SAS
= Analysis using Mplus (v4.2)
m Data summarized using SAS
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TITLE: ANALYSIS 1;
DATA: FILE is C:\Delucchi\MPlus\Data\Samplel.txt;
VARIABLE: NAMES are Group Subject Y1-Y4;
CLASSES = C(2);
USEVARIABLES = Y1-Y4;
ANALYSIS: TYPE = MIXTURE;
STARTS = 100, 10;
MODEL: %0OVERALL%
i s|lyl@0 y2@1 y3@2 Y4@3;
[c#1] (alpha);
%cCc#2%
SAVEDATA: FILE = C:\Delucchi\MPlus\Data\Filel.txt;
RESULTS = C:\Delucchi\MPlus\Data\Analysis1.txt;
SAVE = CPROBABILITIES;
OUTPUT:
model constraint: alpha>0;
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Results from 14 Conditions

m Residual var = 0.5

= N=900

m Largest and smallest effects
m All 7 levels of imbalance
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All Four Conditions
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Mean Estimated Intercept by
Class and Effect Size
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Mean Estimated Slope by
Class and Effect Size
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Revised Simulations

= Ns = 900 (300, 600) and 1800 (600, 1200)
m Residual variance set to 0.1

m Intercepts at 0 and 1

m Slopes at -0.5 and 0.5

m Effect size from 0.2 to 2.2

CAPS 20 November 2009 40



Group 1 —— Mean Intercept

Group 2 —— Mean Intercept = 1, Mean Slope = —0.5
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Percent of Group Correctly Classified by Intercept,
Slope Effect Size
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Mean Estimate of Intercept Means by Intercept,
Slope Effect Size
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Mean Estimate of Slope Means by Intercept,
Slope Effect Size
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Percent of Group Correctly Classified by Intercept,
Slope Effect Size

Residual variance = 0.1, with continuous covariate N(5,5) in Group 1, N(15,5) in Group 2
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Mean Estimate of Intercept Means by Intercept,
Slope Effect Size

Residual variance = 0.1, with continuous covariate N(5,5) in Group 1, N(15,5) in Group 2
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Mean Estimate of Slope Means by Intercept,
Slope Effect Size

Residual variance = 0.1, with continuous covariate N(5,5) in Group 1, N(15,5) in Group 2
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Conclusions

s GMMs — potentially very informative

m Currently seen mainly in drug/alcohol and
developmental studies — esp. criminology

= Simulation results raise concerns
— Poor estimation of group membership
— Model parameters require large effect sizes
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Estimated Intercept Means by Intercept and Slope Variance
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