Log-Gamma Modeling of

HIV Medication Adherence
Data Using SAS

Tor Neilands, Ph.D.
UCSF Center for AIDS Prevention Studies
CAPS Methods Core Presentation
May 14, 2010




SAS Implementation of the example HLP
study log-gamma model for non-adherence

Some preliminaries:

m Bverything you will see in this talk should be considered a
work in progress. Your questions and especially your
feedback and suggestions for improvements or alternative
approaches are most welcome.

HLP Log-Gamma Model for Non-Adherence:

m We first re-created the non-adherence variable in SAS:
B glmadh = 101 - pctadhl ;

m [t is necessary in SAS for the outcome to have values greater than zero for
gamma regression modeling; values of zero or less will be dropped from
analyses.

m We created dummy variables bdisleepl, bdisleep2, and bdisleep3
to represent BDI category 1 vs. 0, 2 vs. 0, and 3 vs. 0, respectively.

= We also created a binary outcome, y_bznary, whose value 1s zero if
non-adherence was zero, one if non-adherence was 1% to 100%o,

and missing if non-adherence was missing. ,




Reprising the Stata analysis using

SAS PROC GLIMMIX

First, we replicated the Stata analysis using PROC
GLIMMIX

You could also do this analysis using PROC GENMOD. We
chose GLIMMIX to make this demonstration consistent
with later demonstrations that make use of repeated
measutres data.

proc glimmix data = temp ;
title "GLIMMIX gamma analysis of HLP data" ;
model glmadh = bdisleep! bdisleep2 bdisleep3 /
solution dist = gamma link = log ;
estimate 'Exp(bdisleepl)’ bdisleepl 1 / exp cl;
estimate 'Exp(bdisleep2)’ bdisleep2 1 / exp cl ;
estimate 'Exp(bdisleep3)’ bdisleep3 1 / exp cl ;

run ;




Results from PROC GLIMMIX

Fit Statistics

-2 Log Likelihood 17445 .47
AIC (smaller is better) 17455 .47
AICC (smaller i1s better) 17455.49

Parameter Estimates

Standard
Effect Estimate =ggelg t Value Pr > |t]
Intercept 2.1423 0.04707 45.51 <.0001
bdisleepl 0.1691 0.06131 2.76 0.0058
bdisleep2 0.2321 0.08353 2.78 0.0055
bdisleep3 0.4352 0.1079 4.03 <.0001
Scale 2.0094 0.04397

Estimates

Exponentiated Exponentiated Exponentiated
Label Estimate Lower Upper

Exp(bdisleepl) 1.1842 1.0501 1.3355
Exp(bdisleep2) 1.2613 1.0707 1.4857
Exp(bdisleep3) 1.5453 1.2506 1.9096




GLIMMIX Results

m Increasing steps in sleep disturbance are positively
associated with non-adherence

m Point estimates are equivalent to those produced by

-olm- 1n Stata

m Standard errors and confidence intervals are different.
Equivalent SEs and Cls can be obtained by specifying

the robust option in Stata and using the option
EMPIRICAL = CLLASSICAL in PROC GLIMMIX.

m [f using SAS PROC GENMOD instead of PROC
GLIMMIX, use a REPEATED statement with
SUBJECT set equal to the subject ID wvariable.




Should we stop here?

® As one of my statistics teachers once said, “If you have one
watch, you always know what time it 1s; if you have more than
one watch, you never know what time 1t 1s”.

We have already introduced the log-gamma model as an
alternative to usual practice of logistic regression of a binary

adherence outcome. Which of these two watches do we
believe?

What if we could combine the two approaches to yield a best-
of-both-worlds scenario that represents a third approach to
modeling HIV medication adherence data?

At the risk of contusing ourselves at a higher level, we will
consider that question next. Perhaps that can help us establish
a plurality of accuracy (many wristwatches collectively may be
even more accurate than one or two). 6
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Distribution of Non-Adherence

m The distribution of non-adherence appears to be
zero-inflated. In other words, many participants were
not non-adherent (1.e., they reported perfect
adherence). 65% (7 = 1855) reported perfect
adherence in the HLLP data.

Could this zero inflation affect model results?

To investigate this question, it would be helptul to
have a method to jointly model the zero cases
versus the non-zero cases using a logistic regression
approach and simultaneously model the non-zero
cases using a gamma distribution. .




Zero-Inflated Log-Gamma Model

This can be accomplished using the gerv-inflated log-ganima
(Z1LG) model.

How do we obtain ZILLG model results? Unlike zero-
inflated Poisson (ZIP) or zero-inflated negative binomial
(ZINB), at the time of this presentation there is no canned

software routine in SPSS, SAS, or Stata for estimating a
Z1LG.

The analyst must write the likelihood function directly and
use a general maximum likelthood estimation program

such as Stata’s -ml- or SAS’s PROC NLMIXED to
perform the estimation.




Log-Gamma Model in PROC
GLIMMIX

m Start out by estimating a non-zero-inflated gamma

analysis for just the non-zero cases using PROC
GLIMMIX:

proc glimmix data = temp ;
title "GLIMMIX gamma analysis of HLP data for GLMADH > 0" ;
where glmadh > 1 ;
y = glmadh - 1
model y = bdisleep1 bdisleep2 bdisleep3 /
solution dist = gamma link = log ;
estimate 'Exp(bdisleepl)’ bdisleepl 1 / exp cl;
estimate 'Exp(bdisleep2)’ bdisleep2 1 / exp cl ;
estimate 'Exp(bdisleep3)’ bdisleep3 1 / exp cl ;

run ;




Log Gamma Model Results

-2 Log Likelirhood

Effect

Intercept
bdisleepl
bdisleep2
bdisleep3
Scale

AIC (smaller i1s better)
AICC (smaller i1s better)

8366.95

8376
8377

Parameter Estimates

Estimate

3.2108
0.008780
0.1003
0.1164
0.7701

Standard

=ggels

0.05292
0.06655
0.08907

0.1053
0.03114

-95
.01

t Value

60.67
0.13
1.13
1.11

Exponentiated
Estimate

Exponentiated
Lower

Exponentiated
Label Upper
1.0088
1.1055
1.1235

0.8853
0.9282
0.9138

1.1495

1.3167

1.3813
11

Exp(bdisleepl)
Exp(bdisleep2)
Exp(bdisleepl)




Logistic Model

®m None of the BDI sleep category variables are statistically
significant for participants with one or more percentage
point of non-adherence.

m What about the odds of being in the perfect adherence
group (1.e., zero non-adherence)?

m Use ordinary logistic regression to address this question

proc logistic data = temp ;
title "Logistsic analysis of HLLP data for GLMADH 0 vs. 1" ;
model y_binary(event="0") = bdisleepl bdisleep2 bdisleep3 ;

run ;




Logistic Results

Analysis of Maximum Likelithood Estimates

Parameter

Intercept
bdisleepl
bdisleep2

Standard

DF Estimate

0.8321
-0.2710
-0.2369
-0.5772

Error

0.0722
0.0924
0.1247
0.1559

Wald

Chi-Square

132.6797

8.5996
3.6077
13.7093

Pr > ChiSq

<.0001
0.0034
0.0575
0.0002

bdisleep3

Odds Ratio Estimates

95% Wald
Confidence Limits

Point

Effect Estimate
0.763
0.789
0.561

0.636
0.618
0.414

0.914
1.008
0.762

bdisleepl
bdisleep2
bdisleep3




Summary of HLP Example Results

m Treating the outcome variable as non-adherence measured on
a 1-101 percentage point scale yielded significant positive
associations between each level of the BDI sleep variable and
non-adherence, using a log-gamma generalized linear model.

Splitting the outcome variable into perfect adherence (0) vs.
some degree of non-adherence (1) using a logistic regression
approach and then further modeling the amount of non-
adherence in the non-adherent cases using a log-gamma
generalized linear model suggests that poor sleep quality is
assoclated with a lower odds of being perfectly adherent, but
sleep quality is not significantly related to the amount of non-
adherence among non-adherent cases.

m What about examining these etfects jointly the same model?




Z.ero-Inflated Gamma Model in
PROC NLMIXED

proc nlmixed data = temp qpoints = 15 lognote = 3 ;
parms a0=0.1 a1=0.1 a2=0.1 a3=0.1 b0=0.4 b1=0.2 b2=0.4 b3=0.4 log_theta = 0;
title "NLMIXED - Log-Gamma inflated model" ;
title2 “Syntax is based on Dale McLerran’s posts on SAS-L” ;
y = glmadh-1;

linfp = a0 + al*bdisleepl + a2*bdisleep2 + a3*bdisleep3 ;
infprob = exp(linfp)/(1+exp(linfp)) ;

linp = b0 + bl*bdisleepl + b2*bdisleep2 + b3*bdisleep3 ;
mu = exp(linp);

theta = exp(log_theta) ;

r = mu/theta ;

if y = 0 then 1l = log(infprob) ;
else 11 = log(1-infprob) - Igamma(theta) + (theta-1)*log(y) - theta*log(r) - y/r ;
model y ~ general(ll);




Z.ero-Inflated Gamma Model in
PROC NLMIXED

The NLMIXED Procedure

NOTE: GCONV convergence criterion satisfied.

Fit Statistics

-2 Log Likelihood

AIC (smaller is better)
AICC (smaller is better)
BIC (smaller i1s better)

Parameter Estimates

Standard
Parameter Estimate Error t Value Pr > |t Alpha Lower Upper Gradient

a0 0.8321 0.07224 .52 <.0001
al -0.2710 0.09241 -93 0.0034
a2 -0.2370 0.1247 -90 0.0576
a3 -0.5772 0.1559 .70 0.0002
o]0) 3.2108 0.05292 .67 <.0001
bl 0.008780 0.06655 .13 0.8950
b2 0.1003 0.08907 .13 0.2602
b3 0.1164 0.1053 211 0.2688
log_theta 0.2613 0.04044 .46 <.0001

0.6905 0.9738 -0.00003
-0.4522 -0.08980 0.000031
-0.4816 0.007653 0.000041
-0.8829 -0.2715 0.000069

3.1070 3.3146 -0.00005
-0.1217 0.1393 0.00005

-0.07435 0.2750 0.000067
-0.08997 0.3228 0.000091
0.1820 0.3405 7.42E-7

cNololNolololoNelNe)
eNololNoloNoNoNoNe
g1 o101 010101 01 01 O

16




HLP ZILG Results Summary

m The ZILG results are the same as the results from the log-
gamma and logistic models that were separately estimated.
Why?

Unlike a ZIP or ZINB model where zero is a possible value
for the continuous part of the distribution, in the ZILG zero
is not possible for the log-gamma part of the model. Whereas
a response of zero in a ZIP or ZINB is a mixture of
probabilities arising from being in the zero group vs. non-zero

group and from being in the non-zero group, but having the
possibility of having a zero response, in the ZILG the
continuous and zero probability components of the
distribution are completely separate.




HLP ZIG Results Summary

m This means that for cross-sectional data there is little
reason to model HIV medication non-adherence using
a formal ZI1LG using NLMIXED — it 1s far more
convenient to model the 0/1 and 1-or-more
distributions separately using logistic and log-gamma
regression, respectively.

m What about clustered or repeated measures data?

m The story may be somewhat different for clustered
data.




Balance Project Example

m Balance is an intervention study designed to help
persons with HIV cope with HIV symptoms and the
side effects of ART (Mallory Johnson, PI)

m T'wo groups (intervention = 1 and control = 0)
measured at five time points: baseline 1 (one week
following screening), baseline 2 (month 3), post-
intervention 1 (month 6), post-intervention 2
(month 9), post-intervention 3 (month 16)

B N = 249 who were randomized to intervention ot
control.
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Repeated Measures Non-Adherence

m As in the HLP example, there appears to be
considerable zero-inflation of the non-adherence
variable.

m As in the HLP example, break the problem down
INto tWo parts:

® Random effects logistic regression of any non-adherence
vs. perfect adherence

® Random effects log-gamma regression for observations
with 1% or more non-adherence.




Random Intercepts Logistic Model

proc glimmix data=temp
method = quad (gpoints = 15)
empirical = classical ;
class subject ;
model y_binary_vas(event='0") = randstat time group_by_time /
solution
dist = binary
link = logit ;
random int / type = un subject = subject ;
nloptions tech = newrap ;

run;




Random Intercepts Logistic Model

Fit Statistics

-2 Log Likelihood 794 .
AIC (smaller is better) 804.
AICC (smaller is better) 805.
BIC (smaller is better) 822.
CAIC (smaller i1s better) 827.
HQIC (smaller 1s better) 812.

Covariance Parameter Estimates

Cov Standard
Parm Subject Estimate Error

UN(1,1) SUBJECT 4.5446 1.1125

Solutions for Fixed Effects

Standard
Effect Estimate Error

Intercept -3.0905 0.3961
randstat -0.3164 0.4788
time -0.02959 0.03455
group_by time 0.09210 0.04435




Random Intercepts Logistic Model

m The significant group-by-time interaction indicates
that the log odds of perfect adherence for the
average intervention group participant 1s higher than
that of the average control group participant over
time.

m The estimate of the random intercept variance 1s
four times larger than its standard error, which
suggests the presence of considerable subject-
specific variability in trajectories of adherence over
time.




Random Intercepts Log-Gamma Model

proc glimmix data=temp
method = quad (gpoints = 15)
empirical = classical ;
class subject ;
where y_binary_vas = 1 ;
model non_adh_vas = randstat time group_by_time /
solution dist = gamma link = log ;
random int / type = un subject = subject ;
nloptions tech = newrap ;

run;




Random Intercepts Log-Gamma Model

Fit Statistics

6363.
6375.
6375.
6396.
6402.
6384.

-2 Log Likelihood

AIC (smaller is better)
AICC (smaller is better)
BIC (smaller is better)
CAIC (smaller is better)
HQIC (smaller is better)

Covariance Parameter Estimates

Standard

Cov Parm Subject Estimate Error

UN(1,2)
Residual

SUBJECT 1.5381

0.7877

0.1490
0.05454

Solutions for Fixed Effects

Standard

Effect Estimate Error t Value

Intercept
randstat

time

group_by time

1.6330
0.008406
0.01412
-0.00232

0.1222
0.1796
0.009269
0.01428

13.37
0.05
1.52

-0.16




Random Intercepts Log-Gamma Model

No significant fixed effects are observed

The random intercept parameter estimate is larger than
its standard error, which suggests the possibility of non-
trivial amounts of subject-specific variance in log-gamma
trajectories of percent non-adherence

Let’s see what happens when we model both the logistic
and log-gamma processes jointly via a random intercept
zero-inflated log-gamma model (ZI1L.G)

B As before, use PROC NLMIXED to fit the ZILG

m Include random intercepts via the RANDOM statement

m Request robust “sandwich” Huber-White standard errors via
the EMPIRICAL option

m Estimate the correlation of random intercepts via a custom
ESTIMATE statement




Random Intercepts ZILG

proc nlmixed data = temp lognote = 3 qpoints = 15 tech = newrap empirical ;
parms 20=0.121=0.1 a2=0.1 a3=0.1 b0=0.4 b1=0.2 b2=0.4 b3=0.4 log_theta=0;

title "NLMIXED - Log-Gamma inflated model with repeated measures: Random
intercepts" ;

y = non_adh_vas ;

linfp = a0 + al*randstat + a2*time + a3*group_by_time + ul ;
infprob = exp(linfp)/(1+exp(linfp)) ;

linp = b0 + b1*randstat + b2*time + b3*group_by_time + u2;
mu = exp(linp);
theta = exp(log_theta) ;

tr = mu/theta ;

it y = 0 then 1l = log(infprob) ;

else Il = log(1-infprob) - lgamma(theta) + (theta-1)*log(y) - theta*log(t) - y/r ;
model y ~ general(ll);

random ul u2 ~ normal([0,0],[v11,c12,v22]) subject = subject ;
estimate ""Corr(ul,u2)" c12 / (sqrt(vl1*v22));




Random Intercepts ZILG

Fit Statistics

-2 Log Likelithood

AIC (smaller is better)
AICC (smaller is better)
BIC (smaller is better)

Parameter Estimates

Standard
Parameter Estimate Error Value Pr > |t]

=
©
>
o))

Lower Upper Gradient

a0 -2.9827 0.3746 .96 <.0001
al -0.4268 0.4656 .92 0.3602
a2 -0.02921 0.03418 .85 0.3937
a3 0.09071 0.04442 .04 0.0422
o]0) 1.5549 0.1272 .22 <.0001
bl 0.01907 0.1839 .10 0.9175
(04 0.01444 0.009317 .55 0.1225
b3 -0.00290 0.01430 .20 0.8394
log_theta 0.2476 0.06884 10 0.0004
v1il 4.2114 1.0482 .02 <.0001
cl2 -1.8062 0.3257 .55 <.0001
v22 1.6688 0.1646 .14 <.0001

-3.7205 -2.2449 9.648E-6
-1.3437 0.4902 -6.24E-7
-0.09653 0.03811 -7.18E-6
0.003222 0.1782 -3.61E-6
1.3043 1.8055 -1.08E-6
-0.3431 0.3812 -2_95E-7
-0.00391 0.03279 -5.26E-6
-0.03106 0.02526 -2.6E-6
0.1120 0.3832 -1.06E-7
2.1468 6.2760 -0.00006
-2.4477 -1.1647 0.000011
1.3446 1.9930 -1.46E-6

cNoloNoNoNoNoNoNoNoNoNe
eclololololoNoNoloNoNeNe)

o1 o1 01010101 0101 01 01 01 O1

Additional Estimates

Standard
Label Estimate Error DF t Value Pr > |t] Alpha Lower Upper

Corr(ul,u2) -0.6813 0.08999 247 -7.57 <.0001 0.05 -0.8586 -0.5041
29




Random Intercepts ZILG

m Results are consistent with the previous random intercepts
logistic and log-gamma models fitted with PROC
GLIMMIX

m The log odds of perfect adherence increase for the average
intervention participant relative to the average control participant
over time.

There is a substantial negative correlation between the two
random intercepts: the higher the odds of perfect adherence,
the lower the value of the log-gamma intercept for non-
adherence, which is conceptually sensible (if a participant is
more likely to be perfectly adherent over time, the
participant 1s less likely to have large values ot non-
adherence and vice versa).

m What about adding random slopes to these models?




Random Intercepts and Slopes
Logistic

proc glimmix data=temp
method = quad (gpoints = 15)
empirical = classical ;
class subject ;

model y_binary_vas(event='0") = randstat time group_by_time
/ solution dist = binary

link = logit ;
random int time / type = un subject = subject ;
nloptions tech = newrap ;

run;




Random Intercepts and Slopes Logistic

Fit Statistics

-2 Log Likelihood 794 .

Effect

Intercept
randstat

time

group_by time

AIC (smaller
AICC (smaller
BIC (smaller
CAIC (smaller
HQIC (smaller

Covariance

Cov
Parm

Subje

UN(L,1)
UN(2,1)
UN(2,2)

SUBJE
SUBJE
SUBJE

is
is
is
is
is

better)
better)
better)
better)
better)

808.
808.
833.
840.
818.

Parameter Estimates

ct Estimate
CT
CT
CT

4.5411
0.004274
0.006423

Standard
=Sggels

1.7037
0.1017
0.01015

Solutions for Fixed Effects

S
Estimate

-3.0475
-0.3303
-0.05269
0.09793

tandard
= ggels

0.4830
0.4790
0.06354
0.04733




Random Intercepts and Slopes
Logistic

m Results are similar to what we obtained in the
previous analyses: a significant group-by-time
interaction such that the average intervention
participant has a higher log odds of being
pertectly adherent when compared with the
average control participant.

m There does not appear to be much variability in
random slopes.




Random Intercepts and Slopes
Log-Gamma

proc glimmix data=temp
method = quad (gpoints = 15)
empirical = classical ;
class subject ;
where y_binary_vas = 1 ;
model non_adh_vas = randstat time group_by_time /
solution dist = gamma link = log;
random int time / type = un subject = subject ;
nloptions tech = newrap ;
run;




Random Intercepts and Slopes
Log-Gamma

® Did not converge:

The GLIMMIX Procedure

NEWRAP needs more than 50 iterations or 500 function calls.

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

UN(1,1) SUBJECT 0.8115
UN(2,1) SUBJECT 0.03265
UN(2,2) SUBJECT 0.001314
Residual 1.6076

Note how close the random slope estimate 1s to zero.

This may be due to the relatively small number of cases with non-zero values
for non-adherence (n = 932 out of 1198 observations had zero non-
adherence).

Modeling random slopes for those few cases may not be desirable.




Random Intercepts and Slopes ZILG

® So far our results suggest modeling the random intercepts for
both the logistic and log-gamma model components, but not
random slopes due to the non-significant slope estimate in the
random intercepts-and-slopes logistic model and the non-
convergent random intercepts-and-slopes log-gamma model.
For illustrative purposes, however, let’s see how to model
random intercepts and slopes simultaneously using the ZILG.

m Model random intercepts and slopes for the binary component of the
model

= Model random intercepts for the log-gamma part of the model

Model the covariance (correlation) between the two random intercepts and
between the logistic random intercept and logistic random slope, but not
between the log-gamma random intercept and the logistic slope

= As before, use PROC NLMIXED

® Run time: 8 hours and 26 minutes
s Tip: Use fewer quadrature points initially during testing




Random Intercepts and Slopes ZILG

proc nImixed data = temp gpoints = 15 lognote = 3 tech = newrap empirical
parms
/* From random intercepts ZILG model */
a0=-2.98 al=-.43 a2=-.03 a3=.09
b0=1.56 b1=_.02 b2=_01 b3=-.003
v1l=4_.21 c12=-1.81 v22=1.67 log_theta=.25
/* From random intercepts and slopes logistic model */
cl3 = .04 v33 = .06

title "NLMIXED - Log-Gamma inflated model with repeated measures: Random intercepts and
slopes™ ;
y = non_adh_pct ;

linfp = a0 + al*randstat + a2*time + a3*group_by time + ul + u3*time ;
infprob = exp(linfp)/(1+exp(hinfp)) ;

linp bO + bl*randstat + b2*time + b3*group_by time + u2 ;
mu exp(linp);

theta = exp(log_theta) ;

r = mu/theta ;

ify =20 then Il = log(infprob) ;
else Il = log(1l-infprob) - Igamma(theta) + (theta-1)*log(y) - theta*log(r) - y/r ;

model y ~ general(ll);

random ul u2 u3 ~ normal([0,0,0],[v11,c12,v22,¢c13,0,v33]) subject = subject ;
estimate "Corr(ul,u2)™ cl2 /7 (sqrt(vll*v22));
estimate "Corr(ul,u3)" c13 / (sqrt(v1ll*v33));




Random Intercepts and Slopes ZILG

Parameter

a0
al
az2
a3
b0
bl
b2
b3
vll
cl2
v22
log theta
cl3
v33

Estimate

2.7425
-0.7147
-0.06837
0.06610
3.1206
0.08147
0.01480
0.02177
5.2984
-0.2952
0.3643
1.1323
-0.08235
0.008230

Fit Statistics

-2 Log Likelihood
AIC (smaller is better)
AICC (smaller i1s better)
BIC (smaller is better)

Standard
Error

0.3867
0.4417
0.03340
0.03805
0.1871
0.1847
0.01241
0.01771
1.7188
0.2700
0.07414
0.1114
0.09145
0.008323

Parameter Estimates

t Value

7.09
-1.62
-2.05

1.74
16.67

0.44

1.19

1.23

3.08
-1.09

4.91
10.16
-0.90

0.99

Pr > |t]

-0001
-1070
.0417
.0836
.0001
.6595
.2342
-2200
.0023
.2753
-0001
-0001
.3688
.3237

OOANANOOOOOANOOOA

Alpha

-05
-05
.05
.05
.05
-05
-05
.05
.05
.05
-05
-05
.05
.05

eNeNoNoloNololoNoNolNoNoNoNe

Lower

1.9808
-1.5848
-0.1342

-0.00886

2.7520

-0.2823
-0.00964
-0.01310

1.9130
-0.8271

0.2182

0.9129
-0.2625

-0.00816

Upper

3.5043
0.1554
-0.00258
0.1411
3.4892
0.4453
0.03924
0.05665
8.6837
0.2366
0.5103
1.3517
0.09778
0.02462

Gradient

-0.00001
5.379E-6
-0.00002
-8.45E-6
2.879E-7
-1.02E-6
1.401E-6

1.53E-6
-0.00012

3.38E-6
-1.54E-6
2_423E-7
8.896E-6
-0.00003

Additional Estimates

Standard

Label Estimate Error DF t Value

Pr > |t]

Corr(ul,u2)
Corr(ul,ul)

-0.2125
-0.3943

0.1795
0.3773

246
246

-1.18
-1.05

0.2375
0.2970




Random Intercepts and Slopes ZILG

® Variance of random slopes for the logistic part of the model
and covariance of random slope with the logistic random
intercept are not significantly different from zero.

The random intercepts model may be better for this
application, though the AIC and BIC favor the random
intercepts-and-slopes model.

The significant a2 coefficient indicates that the log odds of
perfect adherence for the average participant in the control
group decreases over time.

The logistic interaction effect, represented by coefficient a3, is
marginally significant (p = .084), suggesting that intervention
group participation could help the average participant attain
perfect adherence more often over time.

39




Concluding Thoughts

® The log-gamma approach may be an appealing alternative
to standard logistic regression methods for the analysis of
HIV medication adherence data

B [og-gcamma models for non-clustered cross-sectional data
are readily available in Stata and SAS.

m Zero-inflated models may also be considered

m Pros: May more accurately capture distributions with a
preponderance of zeros

m Cons: More complicated to set up, run, and interpret. Also, a lack
of sufficient non-zero data may be concern.

m For non-clustered data, splitting the data into zero vs. non-zero
outcomes modeled with logistic regression and greater-than-zero
data is a viable approach that is simpler to implement and yields
identical parameter estimates and standard errors to the ZILG.
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More Concluding Thoughts

m For repeated measures or clustered data, random etfects ZIL.Gs may
yield similar, but not identical findings to separate random effects
logistic and log-gamma models.

It 1s unclear how much advantage is gained by using the random
effects ZILG vs. separate logistic and log-gamma models.

Other distributions can be explored (e.g.,. Log-normal), with or
without zero-inflation considered using SAS, Stata, and other software
programs.

s There is a SAS macro, mixcorr.sas, written by Janet Tooze available for modeling
zero-inflated normal and lognormal data with separate, but correlated random
intercepts for the zero/not zero and the continuous not zero values.

= Mplus has a nice set of features for two-part modeling of continuous data with a
preponderance of zero values. In the Mplus approach, the non-zero components
are treated as continuous and then transformed (the default transformation is the
log, other transformations, including no transformation, are available).




Some Final Thoughts

Some comments from Chuck McCulloch:

When one specifies a distribution (like Poisson) for a generalized linear model
routine (glm or genmod) the program does not assume a Poisson distribution
but instead garners two bits of information from that specification. First, it uses
it to determine an optimal weighting scheme for calculating the

coefficients. Second, it uses it to calculate model-based SEs, based on the
distribution.

Turning on the robust option (Stata; empirical in SAS) overrides the second
aspect.

In many applications, the weighting aspect is unimportant.

So, if you are specifying the link and using robust SEs, a wide variety of
different distributional choices will give the almost the same result.

If you get far from the true distribution however, you can lose a bit of efficiency.
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