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Abstract

Background An intermediate endpoint is hypothesized to be in the middle of the causal se-
quence relating an independent variable to a dependent variable. The intermediate variable is also
called a surrogate or mediating variable and the corresponding effect is called the mediated, sur-
rogate endpoint, or intermediate endpoint effect. Clinical studies are often designed to change an
intermediate or surrogate endpoint and through this intermediate change influence the ultimate
endpoint. In many intermediate endpoint clinical studies the dependent variable is binary, and
logistic or probit regression is used.
Purpose The purpose of this study is to describe a limitation of a widely used approach to as-
sessing intermediate endpoint effects and to propose an alternative method, based on products of
coefficients, that yields more accurate results.
Methods The intermediate endpoint model for a binary outcome is described for a true binary
outcome and for a dichotomization of a latent continuous outcome. Plots of true values and a
simulation study are used to evaluate the different methods.
Results Distorted estimates of the intermediate endpoint effect and incorrect conclusions can re-
sult from the application of widely used methods to assess the intermediate endpoint effect. The
same problem occurs for the proportion of an effect explained by an intermediate endpoint, which
has been suggested as a useful measure for identifying intermediate endpoints. A solution to this
problem is given based on the relationship between latent variable modeling and logistic or probit
regression.
Limitations More complicated intermediate variable models are not addressed in the study, al-
though the methods described in the article can be extended to these more complicated models.
Conclusions Researchers are encouraged to use an intermediate endpoint method based on the
product of regression coefficients. A common method based on difference in coefficient methods can
lead to distorted conclusions regarding the intermediate effect.

Keywords: Mediation, surrogate endpoint, logistic regression, probit regression, latent variables.

1 Introduction

The purpose of this paper is to describe why standard statistical approaches for examining the

intermediate endpoint or mediated effect using probit and logistic regression can be inaccurate and

how to correct them. The focus of this paper is the case in which the dependent variable is binary

such as dead/alive, presence/absence of disease, or use/non-use of drugs. This paper examines

methodology for modeling how an active intervention condition, compared to control, affects this

outcome through a continuous intermediate or mediating variable. Logistic or probit regression are

traditionally used to examine this mediation effect. Such models are ubiquitous in clinical trials

where the effect of a dichotomous treatment variable on a diagnosis or other dichotomous outcome

is mediated by an intermediate variable.

The notion of an intervening or mediating variable is well established in clinical studies of a
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binary disease outcome [1], [2] where the mediated effect is termed the surrogate or intermediate

endpoint effect. Surrogate endpoints are a subset of mediator variables where the theoretical and

statistical requirements for a variable to be a surrogate endpoint are more stringent than those

for mediators in general. Surrogates are expected to explain the full impact on a distal outcome;

a mediator may explain part of this effect. One important use of an intermediate variable is in

situations where the ultimate outcome is difficult or costly to obtain. In both prevention and

treatment trials, the extended length of time for a disease or death to occur and the low incidence

rates often require exorbitantly large sample sizes to study correlates of the disease. In this situation,

researchers advocate the use of surrogate or intermediate endpoints [3], [4]. Surrogate endpoints

are more frequent or more proximate to the prevention strategy and are therefore easier to study.

Examples of surrogate endpoints are serum-cholesterol levels for the ultimate outcome of coronary

heart disease [5] , measures of immune system response for the ultimate outcome of death in HIV

infected individuals [6], and presence of polyps for the ultimate outcome of colon cancer [7]. The use

of surrogate endpoints rests on the mediation assumption that the independent variable causes the

surrogate endpoint, which, in turn, causes the ultimate outcome [8], [9]. As a result, decomposing

the effects by which a surrogate explains impact on a distal outcome is critically important because

the surrogate endpoint is considered to be causally related to the outcome. The importance of

surrogate endpoints was recently summarized by Begg and Leung [8] (p.27), “Above all else, we

believe that the issue of when and how to use surrogate endpoints is probably the pre-eminent

contemporary problem in clinical trials methodology, so it merits much extensive scrutiny.”

Prentice [9](p.432) defined a surrogate endpoint as a response variable for which a test of the

null hypothesis of no relationship to the treatment groups under comparison is also a valid test

of the corresponding null hypothesis based on the true endpoint. Freedman et al. [10] proposed
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the proportion of the treatment effect explained by an intermediate variable to test this surrogate

endpoint effect. A value of 100% indicates that the surrogate endpoint explains all of the relation

between the treatment and the dependent variable, therefore satisfying Prentice’s definition. If the

proportion mediated is less than 100%, it indicates that some of the relation may not be explained

by this intermediate variable and other causal mechanisms may be neglected [11]. The proportion

measure reflects the size of the surrogate endpoint (i.e., mediated) effect as well as the amount of

the treatment effect explained by the surrogate endpoint. The proportion mediated has not been

accepted without criticism [12], namely that accurate identification of surrogate endpoints requires

measurement of the ultimate outcome [8], that the proportion measure can be negative or greater

than one [13], and that values of the proportion mediated are often very small. Furthermore, other

research has shown that the proportion mediated tends to be unstable unless the sample size is large

or the effect size is very large [14, 15]. In response to the limitations of the proportion measure,

Buyse and colleagues proposed two criteria for a surrogate endpoint (see [16, 17] for more specific

information on these criteria). The first criteria is that the total effect relating the treatment to the

dependent variable divided by the effect of the treatment on the mediator or surrogate variable, is

close to 1. The logic here is that an intermediate endpoint should be affected by a treatment to

the same magnitude as the treatment affects the dependent variable. A second criterion requires

that the relation between the mediator and the dependent variable is also substantial. Both the

proportion mediated and the measures proposed by Buyse and colleagues are important because

they combine a measure of effect size along with a measure of the mediated effect. These Buyse et

al. criteria do not include an estimator of the intermediate endpoint effect so they are not addressed

in this article. Other approaches to identification of surrogate endpoints focus on the importance of

meta analytical combination of results from individual studies [18, 19] and more detailed approaches
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to causal inference from one study [20]. The present article focuses on estimators of the intermediate

endpoint effect from a single study.

In addition to replacing costly outcome measures, intermediate variables can also be used to

elucidate how an intervention leads to changes in the outcome variable. A common example is

in the field of prevention research where programs are designed to change intermediate variables

that prevent negative outcomes. An example of testing mediation with binary outcomes was de-

scribed by Foshee and colleagues [21] in which a program to prevent adolescent dating violence

was hypothesized to work by changing norms, decreasing gender stereotyping, improving conflict

management, changing beliefs about the need for help, increasing awareness of services for victims

and perpetrators, and increasing help-seeking behavior. The researchers compared the values of

the logistic regression coefficient of treatment predicting the binary dating violence outcome with

and without controlling for the proposed mediators. The authors considered evidence of mediation

to occur when the difference between the two values was 20% of the value of the unadjusted coeffi-

cient (i.e., 20% of the program effect was explained by the mediators). Given this criterion, results

indicated that the treatment effect on sexual violence was mediated by changes in norms, gender

stereotyping, and awareness of victim services.

As described by several researchers, the examination of mediation in the evaluation of prevention

programs and clinical trials is important for at least two major reasons [22, 23, 24]. First, most

trials are based on changing mediating variables hypothesized to be related to the outcome measure.

It is important to assess whether the program successfully changed the mediating variables it

was designed to change. If the program was not able to change the mediating variable, then it

would not be surprising that effects on outcomes were not observed. Second, the extent to which

change in one or more mediating variables account for observed program effects sheds light on
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the theoretical basis of the program. This information has practical implications as well, because

ineffective intervention components may be dropped if they do not contribute to intervention success

or intervention components may be added if the original intervention only works through some but

not all hypothesized mediators. Statistical methods for assessing mediation for continuous outcomes

have been described [25, 26], as well as methods for specific statistical models such as covariance

structure models [27] and multilevel models [28]. Issues related to mediation analysis for categorical

outcomes have not received much research attention.

Two general approaches have been offered to quantify mediation [23, 24, 29]. In the situation

where the dependent and mediating variables are continuous and normal-based models are used, one

way to quantify mediation is to compare the regression coefficient of the outcome on the independent

variable both without adjustment for the mediator (βz in Equation 5 below) and with adjustment

for the mediator (γz in Equation 1 below). If the unadjusted independent variable coefficient βz

is nonzero and the adjusted coefficient γz is zero when the mediator is included in the model, the

effect of the independent variable is entirely mediated by the mediating variable. Standard errors

for the mediated effect are available [26] and are generally accurate [15]. This is called the difference

in coefficients method.

A second general method, based on path analysis and more commonly used in the social sciences

for continuous outcomes, treats mediation as the product of two regression coefficients, the regression

of the mediator on the independent variable (αz in Equation 2 below) and the partial regression

coefficient of the outcome on the mediator, adjusted for the independent variable (γm in Equation

1 below) [30]. This method is called the product of coefficients method [26].

For standard least squares regression models without missing data, the difference in coefficients

and the product of coefficients estimators are identical [15]. For binary response variables, the two
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estimators are not identical and can differ dramatically, as shown below. The most widely used

estimator of the standard error of this mediated effect was derived by Sobel [27] using the multi-

variate delta method under the assumption of normality (see MacKinnon et al. [26] for examples

of other standard errors).

The proportion mediated measure, 1 − γz/βz (from Equations below), was suggested by Freed-

man et al. [10]; we note that this measure is not necessarily between 0 and 1. Other possible

definitions of proportion mediated measures are γmαz/βz and γmαz/(γz + γmαz) (from Equations

described below). In the continuous dependent variable case with no missing data, all three propor-

tion measures for the mediated effect are equal. Because logistic and probit regression are nonlinear

models, the point estimates of these two quantities are not equal. In this paper we show some of the

estimates have low bias while others require standardization procedures in order to be appropriate.

The mediated effect along with its standard error can be used to create confidence limits for

the mediated effect [15]. For dichotomous outcomes, Freedman et al. [10] proposed a variance

estimator of the difference in coefficients method. The results of this paper suggest a preference for

the product of coefficients method.

1.1 Complications with the Estimation of the Intermediate Vari-

able Effect with a Binary Dependent Variable

When the dependent variable is binary and logistic regression is used, the difference in coefficients

and product of coefficients methods for calculating the mediated effect are not equal as MacKinnon

and Dwyer [24] demonstrated with a simulation study. This article will examine estimation methods

for mediation analysis with binary outcomes, describe a problem that arises with the estimation,

and propose a solution. The solution is demonstrated with analytical methods and a simulation
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study that investigates both small sample properties and robustness to distributional assumptions.

Finally, we present a case study of a randomized preventive trial to prevent later cigarette use in

adolescence.

2 Estimation of the Mediated Effect with Binary Out-

comes

Let Z be a binary variable representing intervention status (1 for active intervention and 0 for

control), and let the binary Y be the major outcome variable (diagnosis, death, or improvement).

Define X to be p-dimensional covariates measured at baseline. Let M be the hypothesized surrogate

variable. In most trials, M is measured with a continuous variable, rather than a dichotomous one,

since the former provides much greater statistical power. For both practical and statistical reasons,

we consider the case of a continuous M variable, with normal or non-normal errors conditional on

intervention condition.

As in the case of a continuous dependent variable, the mediated effect can be calculated in two

ways when the dependent variable is binary [24]. To calculate the mediated effect both methods use

information from two of the three equations listed below. In this model we assume no treatment

by baseline interaction or moderation.

First, Equation 1 shows a logistic regression model where Y depends on M as well as on baseline
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covariates X and intervention condition Z 1

logit Pr{Y = 1|X = x,M = m,Z = z} = γ0 + γ′
xx + γmm + γzz, z = 1, 0. (1)

where the γ coefficients refer to intercept (γ0), covariates (γ′
x), and intervention (γz) after adjust-

ment for the mediator. For probit regression, a similar expression exists, with logit replaced by the

inverse distribution function for a standard normal.

Second, a linear relationship for the relation between Z and M is assumed.

M = α0 + α′
xx + αzz + εm (2)

E(εm|x, z) = 0, z = 0, 1 (3)

The α coefficients refer to the prediction of M (ignoring Y completely). Like the previous model,

this model assumes no baseline by intervention interaction. Also, most analytic models impose a

distributional assumption on the error, such as normality with a homogeneous variance. This distri-

butional assumption is more restrictive than the conditional mean specifications given in Equations

2 and 3. To specify this exact distribution, fM |XZ(m|x, z) refers to the conditional density of M

given covariates X = x and intervention condition Z = z.

The subscript i is used to indicate subject level covariates (Xi), intervention assignment (Zi),

mediator (Mi), and distal outcome (Yi), for subjects i = 1, . . . , n. It is assumed that each mediator

1In the social science literature four symbols are often used to express the mediation equations. Our notation in this

paper allows other covariates and is more in line with notation used in standard logistic regression modeling. This footnote

shows their comparability. The symbol a, the regression of the mediator on the intervention condition, is given by αz in

this paper’s notation. The symbol b, the partial regression of the outcome on the mediator adjusted for the intervention

condition, is given by γm in our notation. The symbol c for the regression of the outcome on the intervention condition

without adjusting for the mediator is given by βz in our notation. Finally, c′, the partial regression of the outcome on

the intervention condition adjusted for the mediator, is given by γz .
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is independent of all other mediator outcomes and is given by Equation 2 – 3 conditional on all

covariates and intervention assignments. Also, given all covariates, intervention assignments, and

mediators, the distal outcomes Y1, . . . , Yn are all independent and follow the distribution specified

in Equation 1.

Under the above assumptions, as sample size increases, asymptotically unbiased estimates of

α’s and γ′s can be estimated through standard least squares and logistic regression respectively.

Further, the marginal relationship between Z and Y , conditional on X but unconditional on M , is

given by

Pr{Y = 1|X = x, Z = z} =

∫ ∞

−∞
(1 + e−γ0−γ′

xx−γmm−γz z)−1fM |Xz(m|x, z)dm, z = 1, 0. (4)

Equation 4 shows the true relation between Z and Y , conditioning on multiple covariates X but

not depending on M . This relation is called the marginal relation between Z and Y in this paper.

Without knowing the explicit form of fM |XZ, the above integral cannot be evaluated explicity, and

regardless of the form of this error distribution, there is no simple form for this integral. Instead,

researchers often introduce a standard logit model for this marginal relationhip between Y and X

and Z. In particular, consider the following model:

logit Pr{Y = 1|X = x, Z = z} = β0 + β′
xx + βzz, z = 1, 0. (5)

Equation 4 reduces to the logit form given in Equation 5 only if there are no covariates [31]. When

there are no covariates, the binary nature of Z allows specification of these parameters in a standard

logit model. Even in this case of no covariates, however, there is no analytic way to obtain the

exact value of βz from the α and γ coefficients; the integral needs to be evaluated numerically or

approximated.
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2.1 Quantifying mediation using the difference of coefficients method

There are two equivalent methods for examining the degree of mediation, difference in coefficients

and product of coefficients methods. As will be shown below, these two methods are not the same for

binary outcome models. A natural method for quantifying mediation is to compare the coefficients

for the marginal relationship between Z and Y , to that adjusting for M . No difference in these

coefficients implies that knowledge of M plays no role in predicting how intervention affects the

distal outcome. This method has been proposed for dichotomous outcomes as well, but applied

to the approximate marginal model Equation 5 rather than the exact marginal model given by

Equation 4. Thus this straightforward (but as we will see inaccurate) difference in coefficients

method is based on the parameter difference, βz −γz. It is estimated by fitting two separate logistic

regression models, one using covariates and intervention status as predictors, the other including

the mediator as well. We know of no applied research examples that use the difference in coefficients

method with the correct marginal relationship, Equation 4.

2.2 Quantifying mediation using the product of coefficients method

The second method for assessing mediation in continuous outcome models relies on a path diagram

approach. Mediation depends on the product of the relation between intervention and mediator, and

the relation between mediator and distal outcome, adjusted for intervention. A direct application

of this method to the regression model of M on Z and the logistic regression model of Y on both

M and Z leads to examination of αzγm.
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2.3 Mediation using latent variables

Since there is equivalence between the difference in coefficent and product of coefficient methods

with linear, continuous models, it is useful to embed the problem within a continuous model. Inves-

tigation of the nonequivalence of the methods clarifies how the two approaches differ statistically

and conceptually. The equivalance of the two methods is demonstrated using an alternative repre-

sentation of these logistic regression models in terms of an underlying latent variable, an approach

that goes back at least to Finney [32].

Equation 1 can be expressed equivalently by introducing the unobserved latent variable Y ∗ that

is linearly related to Z and M as well as covariates X.

Y ∗ = γ0 + γ′
xx + γmm + γzz + εy, z = 1, 0. (6)

In this model we let εy represent the residual variability having a standard logistic distribution,

that is,

Pr{εy < u} =
eu

1 + eu
. (7)

We also assume that this error in predicting Y ∗ is independent of the error predicting M from Z

in Equation 2. The dichotomous, observable Y is derived from Y ∗ through the relation Y = 1 if

and only if Y ∗ > 0. This definition of Y in terms of Y ∗ and the logit error distribution together

produce a model that is identical to that of Equation 1.

In Equation 6, we can substitute the expression for M in terms of Z that is explicit in Equation
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2, obtaining

Y ∗ = γ0 + γ′
xx + γm(α0 + α′

xx + αzz + εm) + γzz + εy

= γ0 + γmα0 + (γx + γmαx)′x + (8)

(γz + γmαz)z + (9)

γmεm + εy (10)

The next to last line above shows that the mean difference on Y ∗ for active intervention versus

control when not adjusting for M is (γz + γmαz). The mean difference on Y ∗ when adjusting for

M is γz. Thus the product of coefficients, γmαz is identical to the difference in coefficients on

the Y ∗ scale. This underlying equivalence of the two methods when applied to the mean of Y ∗

holds regardless of the distribution of εm as long as these errors have zero conditional means as in

Equation 3.

2.4 Estimation and variance of mediated effects with binary out-

comes

This section shows that the estimates based on the product of coefficients method produce asymptot-

ically unbiased estimates of the mediated effect while those derived from the difference in coefficients

method must be scaled properly in order to reduce zero-order bias. We also show that variance

estimates from the General Estimating Equation (GEE, see [33]) approach can be used to form

confidence intervals and testing. Appendix A shows the consistency of the product of coefficients

method for logistic regression when Y |XMZ is given by Model 1 and the conditional mean of

M |XZ is linear as in Equations 2 and 3. Appendix A also shows the asymptotic independence of

γ̂ and α̂z.
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2.4.1 Standardizing mediated effects based on the difference of coefficients

method

In this section, it is shown that the ordinary estimates obtained from a logistic regression of Y on

X and Z based on Equation 5 are not consistent for γz + γmαz. We start from the true latent

variable representation in Equations 8 - 10. Then

Pr{Y = 1|X = x, Z = z} = Pr{γmεm +εy > −(γ0+γmα0)−(γx +γmαx)′x−(γz +γmαz)z} (11)

Unless γm = 0, this probability function will not have a logistic form. More importantly, because

the variance of γmεm +εy is larger than that of a standard logistic error, all of the logistic regression

estimates of the intercept and slopes for x and z will be biased. It is possible to make adjustments

for this higher variance, noting that a standard logistic regression error has variance V ar(εy) = π2/3

[35] while the marginal variance is V ar(γmεm + εy) = γ2
mV ar(εm) + π2/3. Thus if we first perform

logistic regression of Y on x and z, then multiply all the logistic regression estimates, including β̂z

by this factor,

β̂logit.standard
z = β̂z

√
3(γ̂2

mV̂ ar(εm) + π2/3)/π2, (12)

the coefficient will at least be scaled properly. In the tables below we refer to this as the standardized

logistic solution and investigate how this simple adjustment compares with the unstandardized

solutions. Similarly, the proportion mediated can then be estimated by 1 − γ̂z/β̂logit.standard
z .

For probit regression, the residual variance is fixed to one while V ar(γmεm+εy) = γ2
mV ar(εm)+

1. Thus the standardized probit solution is to adjust the routine probit regression estimate of β̂z

by

β̂probit.standard
z = β̂z

√
1 + γ̂2

mV̂ ar(εm). (13)

When using the standardized estimate of βz, the standard error of the estimate needs to be
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scaled as well. Bootstrap resampling can also be used to obtain the standard error.

3 Simulation Study

A simulation study was conducted to demonstrate the discrepancy between βz − γz and γmαz and

to investigate the performance of different estimators for the proportion mediated. The mean and

variance of different estimators of the mediated effect and the proportion mediated were investigated

as a function of sample size and size of relations among variables. In addition, the simulation allows

the exploration of robustness to both the logistic assumption in Equation 4 and to the normality

assumption for the distribution of M |Z.

The Z variable was always dichotomous with equal numbers in each group, and the mediator M

was either normally distributed, distributed as a t-distribution with 3 degrees of freedom, or having

large skewness in the error; these were generated using a chi-square distribution on 3 degrees of

freedom. This latter situation was chosen to mimic the primary departure from normality that we

observed in our actual data example below. For all of these cases we still apply least squares so

that we can examine the impact of misspecifying the error distribution for M |Z.

The outcome variable Y ∗|MZ was generated to have either an underlying logistic or a normal

error distribution. Thus with the assumption of a logit error, Y |MX follows Equation 1 with

a similar probit model for normal errors. Estimates were compared for both logistic and probit

regression with underlying probit errors so that we can assess the impact of misspecifying the

conditional model for Y |MX. Simulated sample sizes were 50, 100, 200, 500, 1000, and 5000.

Parameter values for αz, γm, and γz were chosen to correspond to four different effect sizes ([36], p.

412-414) of small (2% of the variance), medium (13% of the variance), large (26% of the variance),

and very large (40% of the variance). These parameter values correspond to .14, .39, .59, and
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1, respectively in a population mediation model with continuous variables. For each of these 64

combinations of parameter values and all six sample sizes used in the simulation, there were 500

replications. In addition, for every combination of parameter values we computed one replication

for a sample size of 20,000, using this as the true expected value for infinite sample size.

The accuracy of the point estimates were compared to the parameter values generating the

latent Y ∗ data. Also, by comparing the means across different estimators for the largest sample

size (20,000), we can examine the variation in population averages of the different parameterizations.

Analysis of Variance was used to estimate effects of parameter value and sample size in order to

summarize results. To conserve space, details of the analysis of variance are not presented.

3.1 Graphical Comparison of the difference in coefficient and prod-

uct of coefficient methods

We begin with a graphical comparison of the product of coefficients with both standardized and

unstandardized difference in coefficient methods, all derived under a correctly specified model. For

logistic regression, a comparison of the unstandardized β̂z − γ̂z, the standardized β̂logit.standard
z − γ̂z,

and the product of coefficients γ̂mα̂z estimates of mediation effects is shown in Figure 1 for the case

where M |Z is normally distributed. In this figure, the large sample expected values, obtained

through 500 simulations of the three estimators of the mediated effect with n = 20, 000, are plotted

as a function of increasing values of the γm coefficient, averaging across values for the relation

between the independent variable and the mediator (αz). As the relation between the mediator

and dependent variable gets larger, the size of the expected mediated effect should increase linearly

because this relation is one of the components of the mediated effect. As shown in Figure 1, with

increasing values of the γm parameter, all three estimators increase at different rates. While the
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mean of the estimated product of coefficients measure, γmαz, has the highest rate, the difference in

coefficients measure, βz − γz, tends to flatten out at larger values of γm. Also shown in this figure,

the standardized measure for β̂logit.standard
z − γ̂z is very close to the γ̂mα̂z values. This result demon-

strates the distortions possible when using the unstandardized difference in coefficients method. A

similar pattern in the three estimates exists for probit regression and for other combinations of logit

and probit error and logistic and probit regression.

Insert Figure 1 here

Figure 2 and 3 demonstrate problems with the βz − γz method of estimating mediation. Figure

2 shows the value of βz − γz as function of γz for the case where the true model holds αz at zero

and allows γz to vary. The true mediated effect is zero for all conditions in the plot and the αzγm

estimator of the mediated effect correctly has a value of zero for all values while the βz −γz estimate

departs from zero and becomes more negative as γz increases. Figure 3 shows similar information

for the two estimators with αz held at .14 and γm varied so that the mediated effect should increase

as γz is increased. The value of βz − γz varies as function of the value of γm and for γz equal to 1,

βz − γz increases slightly and then declines even though the true mediated effect is increasing.

Insert Figures 2 and 3 here

3.2 Numerical Comparison of Mediation Measures under the Cor-

rect and Incorrect Models for the Dependent Variable

The first two tables are based on logistic and probit models with each fit using the appropriate

model. The third table fits a logistic model to data generated from a probit model. For tables 1 to

6 below, we provide three rows for comparison. The first two rows compare the replication averages
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to population quantities whereas the last row examines variability due to replications. The first row,

labeled Mean (µn), provides a mean value of the estimates for each sample size (n), averaged over

the 64 combinations of parameter values. Since all of the parameter values chosen are positive, a

mean value that is smaller than those used to generate the data, labeled in the table as µ, indicates

attenuation. Changes across this row reflect sample size bias. The second row, labeled Standard

Deviation (σn) , measures the average standard deviation of the replication-averaged means over the

64 different parameter value simulations at that sample size. These values can be compared to the

true standard deviation across the 64 sets of parameter values (σ). The last row, labeled Average

Squared Distance, measures the average squared distance of the estimate from the expected value

of the estimate. The expected value of the estimate was obtained through 500 simulations with

n = 20, 000.

Insert Table 1 here

Table 1 compares the three estimators of mediated effect when the underlying data are both

generated and modeled with a logistic distribution. The distribution of M |Z is generated from the

normal and modeled as normal. For the product of coefficients method which is listed first, the first

row shows there is very little overall bias for large samples (0.281) and very modest bias for small

samples (0.314), compared to the true population mean (0.281). In terms of variability of these

estimates across the sets of parameters, the second row shows substantial variation at sample size

of 50 (σn = 0.439 relative to σ = 0.258), but minimal difference in these estimates with sample sizes

of 500 or above. The last row indicates that the replication variances for the product of coefficients

method decrease smoothly to zero.

The unadjusted difference in coefficients method exhibits several unfavorable behaviors. The

first row shows it produces systematic attenuation, with µ5000 = 0.213 compared to µ = 0.281.
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Also, these means are nearly constant over the different sample sizes. Variability across these 64

replications in the average difference in coefficients estimates shows a similar pattern of decrease

with sample size compared to the product of coefficients method.

Standardizing the difference in coefficients under a logistic model does substantially reduce the

attenuation, as indicated by the first row in the third part of this table. Also, σn is quite appropriate

given the 8% attenuation that still occurs for a sample size of 5,000.

Insert Table 2 here

Table 2 shows the same comparisons of mediated effect when the underlying data are both

generated and modeled with a probit distribution. Again, the distribution of M |Z is taken from

the normal and modeled as such. As shown in the three parts in Table 2, the γmαz and βz − γz

estimators are not equal but standardization makes βz − γz very close to γmαz.

The product of coefficients method behaves just as well under a probit model as it does under a

logit model. There is very little bias (row 1), and variability in these estimates behaves quite well

for large and small sample sizes (row 2).

Examination of the unadjusted difference in coefficients method in Table 1, leads to a very

different conclusion. First, there is large attenuation of this method (µ5000 = 0.160 compared to µ =

0.281), even more than under a logistic model. Also, compared to the product of coefficients, there

is larger variance as a function of sample size (σ50/σ5000 = 1.76) for this difference in coefficients

method. However, standardization succeeds very well, making each estimae of βlogit.standard
z − γz

nearly identical to those of γmαz.

Insert Table 3 here

The sensitivity of these estimates to the assumption of a logistic distribution is investigated in

this section. Table 3 shows the behavior of the different estimators for the mediated effect when the
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underlying data are generated with a probit distribution but analyzed with logistic regression. We

note that these two distributional assumptions are difficult to distinguish in practice unless large

amounts of data are available. Thus methods that behave differently under these logistic and probit

assumptions are not robust against this fairly innocuous change in models. Again, the distribution

of M |Z is taken from the normal and modeled as such.

Unlike the two previous tables where definitions of mediation could be computed directly from

the parameters themselves, this table’s true mediated effects had to be defined numerically based

on finding a best-fitting linear logistic model applied to data generated by a linear probit model.

We found µ = 0.475 and σ = 0.442.

As shown in Table 3, the three methods produce quite different results, with the difference in

coefficients having the smallest values, the product of coefficients method having the largest values,

and the standardized method having a mean 13% smaller than the first. For large sample sizes,

the product of coefficients methods agrees very closely with the mean over the 64 sets of parameter

values (µ5000 = 0.475). We do, however, observe in row 1 of this table a relatively large bias of

order
√

n−1. This overestimation in small samples under an incorrect logit assumption is somewhat

larger than the overestimation when the true probit model is used. In contrast, the unadjusted

difference in coefficients method shows severe attenuation at large samples, even more than it did

under a correctly modeled probit. The unadjusted difference in coefficients method produces a

modest negative
√

n−1 bias making attenuation larger in smaller sample sizes.

3.3 Simulation for the Proportion Mediated Measures

We next compared five different estimators of the proportion mediated, using the product of coef-

ficients and unstandardized and standardized estimates of difference in coefficients. Note that the

20



first estimator is based on coeffients that need no standardization; because the second and third

estimators use βz in the denominator, we anticipate that they will contain bias. The fourth and fifth

estimators use the standardized βz in the denominators and because of this we expect a priori that

they will do nearly as well as the first. For Table 4 the dependent variable is generated from a logit

and modeled using logistic regression, with the mediator having a normal distribution and modeled

as such. The true mean of the 64 simulations for the proportion mediated is 0.343 and σ = 0.227.

Both of these agree well with the µ5000 and σ5000 for the first estimator, α̂z γ̂m/(α̂z γ̂m + γ̂z). How-

ever, this estimator performs extremely poorly for samples of 500 or smaller since at these sample

sizes the variability in the estimates is extreme. This is caused by the denominator occasionally

being near zero. For the second and third estimators, which are both based on unstandardized

βz, both are severely biased in large samples and are therfore not recommended. The last two

estimators, which are based on denominators with standardized βz both have modest bias in large

samples (µ5000 = 0.360 and 0.335 respectively versus a true value of 0.343) and agree well across all

64 simulations, as indicated by the fact that σ5000 is only modestly larger than σ = 0.227. Some-

what surprisingly, both of these estimators perform better than the first in small samples, although

there is still substantial variability across replications.

Insert Table 4 here

The results for probit regression under a true probit model mirror these results for a correct

logistic regression and therefore are not presented in tabular form but only described. Again, the

large sample fits using α̂zγ̂m/(α̂z γ̂m + γ̂z) are the best, followed by the last two estimators that use

standardized βz. The two nonstandardized models have very large bias in large samples. Also as

in the previous case with logistic regression modeling a true logit model, there is extremely high

instability of the first estimator for sample sizes of 500 or below. We conclude that the measure of
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the proportion mediated is inherently difficult to estimate in small to moderate sized samples.

We now turn to estimation of the proportion mediated when the data are generated under

a probit but analyzed incorrectly with logistic regression. As the results are similar to the two

correctly analyzed logistic and probit regressions just described, no table is shown. Again, large

sample bias for α̂z γ̂m/(α̂zγ̂m+γ̂z) is negligible, but this estimator is still subject to extreme variance

in small to moderate samples. The last two estimators with standardized βz in the denominators

perform much better in small samples and show only a small amount of bias with a sample size of

5,000. However, both of these estimators that rely on unstandardized βz show substantial bias in

large samples and cannot be recommended.

3.4 Simulation results when both conditional distributions are in-

correctly specified

To investigate how sensitive results are to the underlying distributional assumptions, we investigated

the behavior of the three estimators of mediation effect in two situations where the conditional

distributions of Y and M were both misspecified. Again, for both of these simulations we assumed

a true probit model but used logistic regression to model how Y depends on M and Z. In the first

simulation described below, we assumed that M |Z was normal, but the true error distribution for

the mediator was given a t-distribution with 3 degrees of freedom. That is, M = αz(Z − 3/2) +

T3/
√

3, z = 1, 2 with the scale factor chosen so that the variance of the error term is one. This

symmetric error distribution with large but finite variance is often used in studies of robustness to

a small proportion of large errors. The second simulation was generated to resemble the data in

our example described below. These data had substantial skewness (κ1 ∼ 2). In our simulation,

the mediator was generated as M = αz(Z − 3/2)+ (χ2
2 − E(χ2

2))/2 so that the skewness in the data
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were exactly 2. The errors were weighted so that the standardized regression coefficients for the

mediator were again small (0.14), medium (0.39), and large (0.59) to match the earlier simulations.

In Table 5 , where the t-distribution is incorrectly modeled as normal, the product of coefficients

method performs quite well. In fact, the simulation results for this estimator are nearly identical to

the ones obtained in Table 3 where conditional normality for M was correctly assumed. In fact, the

means and variances are almost identical for the product of coefficients method (0.475 versus 0.475

for µ5000 and 0.443 versus 0.444 for σ5000). There is also very good agreement between the product

of coefficients method and the standardized difference in coefficients method across all sample sizes,

much better than that in Table 3. Both of these methods show positive bias at smaller sample sizes.

Just as before, the unstandardized difference in coefficients method shows substantial bias in large

samples and little change in bias as a function of sample size.

Insert Table 5 here

In Table 6, with an asymmetric error distribution, we anticipate some instability of these esti-

mators because they are computed using two wrong distributional assumptions. Only the product

of coefficients method provides very little overall bias. In particular, µ5000 = 0.487, which agrees

very well with value of µ5000 = 0.475 from Table 3 and 0.475 from Table 5, the two previous mod-

els with the same incorrectly specified logistic model. There is somewhat more variation in these

estimates with a asymmetric error distribution than in the previous two cases (σ5000 = 0.579 com-

pared to 0.444 when normality is correctly assumed). These differences, however, are quite minimal

compared to the instability of both the unstandardized and standardized difference in coefficients

methods for the normality, long-tailed, and asymmetric error distributions. In particular, µ5000

varies from 0.235 to 0.365 for the unstandardized difference in coefficients and from 0.410 to 0.582

even with standardization.
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Insert Table 6 here

4 Case Study with Intentions as a Mediator for Cigarette

Use

Mediation for a binary dependent variable is illustrated here with a data set from a school-based

drug prevention program. The Midwestern Prevention Project (MPP) was a longitudinal school-

and community-based drug prevention program. The intervention program was introduced to 6th

and 7th grade students in Kansas City and consisted of school and parent programs, health policy

changes and mass media coverage (for full details see Pentz et al.[37]). Schools were randomly

assigned to treatment or control conditions. In this example we posit that behaviors are preceded

by behavioral intentions, and test whether intention to use cigarettes is a mediator of the program

effect on cigarette use. The data set consists of 864 students with complete data on three variables:

Z treatment condition; M intention to use tobacco in the following two month period, measured

approximately six months after baseline; and Y report of tobacco use at follow-up in the prior one

month period. Table 7 contains the cross-tabulations of these three variables, as well as the coding

schemes.

Insert Table 7 here

The mediated effect was estimated using Equation 11 and least squares regression of M on Z.

When calculated as α̂zγ̂m , the mediated effect was -0.171 ( σ̂2
αzγm = .0648, CI= -0.298, -0.044).

When calculated as β̂z − γ̂z the mediated effect was -0.129 (σ̂βz−γz = 0.089, CI= -0.303, 0.046),

a discrepancy of 25% and a formal difference in whether a significant mediation was found. This

discrepancy is also present in the various proportion mediated measures, with 1 − γ̂z/β̂z = 0.254,

α̂zγ̂m/β̂z = 0.338, and α̂z γ̂m/γ̂z + α̂z γ̂m = 0.312. Although the proportion mediated estimates in
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this example are all greater than .20, the proportion mediated estimates using the α̂zγ̂m estimate

are 20 to 30% greater than the size of the estimate using β̂z and γ̂z.

Equation 12 was used to standardize the βz logistic regression estimate. After standardization,

the difference in coefficient mediated effect and the two proportion measures involving proportions

were recalculated. The standardized estimate of the difference in coefficients estimate was -0.197,

much closer to the product of coefficients estimate. The standardized proportion measures are

1 − γ̂z/β̂z = 0.343 and α̂zγ̂m/β̂z = 0.297. These results are also consistent with the simulation

study; standardization brings the estimates much closer together. In this example, the use of the

unstandardized estimates would lead to the conclusion that the mediated effect was smaller than it

truly was.

5 Discussion

The purpose of this paper was to examine two different approaches to estimating the intermediate

endpoint or mediated effect when the dependent variable is binary and logistic or probit regression

is used. Unlike the linear model situation, the difference in coefficients and product of coefficients

estimators can lead to substantialy different estimates and inferential conclusions. We recommend

using the product of coefficients methods for the following reasons. It generally has less bias

than the difference in coefficients method, it reflects the population mediated effect, and in our

simulations it was quite robust against departures from the logistic or probit assumption as well as

the normality assumption for the distribution of the mediator. This estimator behaved well under

both a symmetric error distribution with heavy tails as well as an asymmetric error distribution.

Another advantage of this method is that it is the easiest to compute.

We do not recommend the use of the difference in coefficients method. The unstandardized
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procedure can indicate no change in the mediated effect when it is actually increasing. This effect

is due to the difference in scales of the logistic regression coefficients of Y on Z adjusting or not

adjusting for M as these coefficients come from separate logistic regression equations. There may be

situations where the mediated effect is defined in terms of a difference in coefficients so the method

may be appropriate. The same problem also affects the proportion mediated measures based on

this difference in coefficients method. Standardizing coefficients prior to calculating these quantities

does improve the performance of the difference in coefficients method.

None of the five estimators for the proportion mediated effect were fully satisfactory. The

method based on the product of coefficients performed well in samples over 500 both in terms of

bias and robustness to the probit assumption, but this estimator showed a high degree of variabil-

ity in small samples. The two estimators based on the unstandardized difference in coefficients

method showed marked bias even in large samples. By standardizing the denominator for these two

estimators, there was a marked decrease in bias compared to the unstandardized version, and the

results were somewhat more stable across different sample sizes. We recommend not using any of

these estimators for samples below a few hundred and in large samples recommend estimating the

proportion mediated based on the product of coefficients method.

Although the results discussed in this article are for the binary X case, the results were very

similar when the study was conducted with a continuous X. The only important difference in the

results was related to the α̂z γ̂m/γ̂z + α̂zγ̂m proportion mediated estimator, which performs much

better when Z is continuous.

A limitation of the current study is that is does not discuss multiple mediator models. More

complicated models would have the same issues with mediation estimation as described in this

article. Similarly, it was assumed that the form of the true mediation model was known and no
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moderation existed. With actual data, the model is not known and issues related to the true

relations among Z, M , and Y may be more difficult to disentangle.
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Figure 1: Average values of mediated effect estimates: Logistic regression
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Figure 2: Estimated mediated effects as function of γz when αz is held at 0: Logistic regression
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Figure 3: Estimated mediated effect β̂z − γ̂z as function of γm and γz with αz = .14: Logistic regression
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Table 1: Comparison of the product of coefficients and difference in coefficients estimators of the

mediated effect under a correct logistic and correct normality assumption

Sample Size

50 100 200 500 1000 5000

γ̂mα̂z µ = 0.281, σ = 0.258
Mean (µn) 0.314 0.295 0.289 0.285 0.283 0.281
Standard Deviation (σn) 0.439 0.342 0.298 0.272 0.265 0.258
Average Squared Distance 0.111 0.045 0.020 0.007 0.004 0.001

β̂z − γ̂z

Mean (µn) 0.214 0.213 0.214 0.214 0.213 0.213
Standard Deviation (σn) 0.356 0.270 0.234 0.213 0.206 0.201
Average Squared Distance 0.080 0.031 0.014 0.005 0.003 0.001

β̂logit.standard
z − γ̂z

Mean (µn) 0.289 0.271 0.266 0.262 0.260 0.259
Standard Deviation (σn) 0.420 0.320 0.277 0.253 0.245 0.239
Average Squared Distance 0.105 0.040 0.018 0.007 0.003 0.001
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Table 2: Comparison of the product of coefficients and difference in coefficients estimators of the

mediated effect under a correct probit and correct normality assumption

Sample Size

50 100 200 500 1000 5000

γ̂mα̂z µ = 0.281, σ = 0.258
Mean (µn) 0.321 0.295 0.289 0.285 0.283 0.281
Standard Deviation (σn) 0.428 0.323 0.288 0.269 0.263 0.257
Average Squared Distance 0.096 0.031 0.014 0.005 0.003 0.001

β̂z − γ̂z

Mean (µn) 0.149 0.156 0.159 0.161 0.160 0.160
Standard Deviation (σn) 0.301 0.222 0.194 0.180 0.174 0.170
Average Squared Distance 0.057 0.019 0.008 0.003 0.002 0.000

β̂probit.standard
z − γ̂z

Mean (µn) 0.326 0.297 0.290 0.285 0.283 0.281
Standard Deviation (σn) 0.445 0.326 0.290 0.269 0.263 0.257
Average Squared Distance 0.108 0.033 0.015 0.005 0.003 0.001
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Table 3: Comparison of the product of coefficients and difference in coefficients estimators of the

mediated effect under an incorrect logistic and correct normality assumption

Sample Size

50 100 200 500 1000 5000

γ̂mα̂z µ = .475, σ = .442
Mean (µn) 0.548 0.501 0.490 0.482 0.478 0.475
Standard Deviation (σn) 0.741 0.560 0.499 0.464 0.454 0.444
Average Squared Distance 0.288 0.095 0.042 0.016 0.008 0.002

β̂z − γ̂z

Mean (µn) 0.218 0.229 0.234 0.236 0.235 0.235
Standard Deviation (σn) 0.512 0.369 0.320 0.294 0.285 0.278
Average Squared Distance 0.168 0.055 0.024 0.009 0.004 0.001

β̂logit.standard
z − γ̂z

Mean (µn) 0.483 0.435 0.424 0.416 0.413 0.410
Standard Deviation (σn) 0.707 0.508 0.448 0.414 0.403 0.394
Average Squared Distance 0.284 0.082 0.037 0.013 0.007 0.001
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Table 4: Comparison of the product of coefficients and difference in coefficients estimators for the

proportion mediated estimators under a correct logistic assumption and correct normal assumption

Sample Size

50 100 200 500 1000 5000

γ̂mα̂z/(γ̂z + γ̂mα̂z) µ = 0.343, σ = 0.227
Mean (µn) −2.4 × 1011 3.8× 1011 1.3× 1010 0.358 0.280 0.349
Standard Deviation (σn) 1.7× 1013 4.4× 1013 2.3× 1012 13.508 13.144 0.247
Average Squared Distance 3.0× 1026 1.9× 1027 5.2× 1024 182.396 172.716 0.009

1 − γ̂z/β̂z

Mean (µn) 0.243 0.311 0.412 0.340 0.320 0.304
Standard Deviation (σn) 3.862 6.659 8.494 4.905 1.142 0.251
Average Squared Distance 14.872 44.256 72.060 23.981 1.243 0.010

γ̂mα̂z/β̂z

Mean (µn) 0.360 0.407 0.501 0.427 0.403 0.386
Standard Deviation (σn) 3.845 6.682 8.428 5.084 1.145 0.284
Average Squared Distance 14.716 44.532 70.926 25.743 1.231 0.011

1 − γ̂z/β̂logit.standard
z

Mean (µn) 0.288 0.335 0.435 0.369 0.350 0.335
Standard Deviation (σn) 3.414 6.107 7.776 4.584 1.116 0.248
Average Squared Distance 11.618 37.214 60.387 20.934 1.185 0.010

γ̂mα̂z/β̂logit.standard
z

Mean (µn) 0.314 0.360 0.460 0.395 0.375 0.360
Standard Deviation (σn) 3.403 6.115 7.708 4.715 1.114 0.258
Average Squared Distance 11.535 37.314 59.324 22.151 1.175 0.010
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Table 5: Comparison of the product of coefficients and difference in coefficients estimators of the

mediated effect under an incorrect logistic and incorrect normality assumption (probit and t(3))

Sample Size

50 100 200 500 1000 5000

γ̂mα̂z µ = .474, σ = .440
Mean (µn) 0.555 0.510 0.492 0.480 0.476 0.475
Standard Deviation (σn) 0.762 0.579 0.506 0.466 0.451 0.443
Average Squared Distance 0.330 0.116 0.049 0.018 0.009 0.002

β̂z − γ̂z

Mean (µn) 0.317 0.314 0.310 0.307 0.306 0.306
Standard Deviation (σn) 0.532 0.398 0.352 0.326 0.317 0.311
Average Squared Distance 0.168 0.051 0.022 0.008 0.004 0.001

β̂logit.standard
z − γ̂z

Mean (µn) 0.597 0.538 0.514 0.500 0.496 0.495
Standard Deviation (σn) 0.828 0.618 0.541 0.497 0.483 0.475
Average Squared Distance 0.386 0.124 0.052 0.019 0.010 0.002
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Table 6: Comparison of the product of coefficients and difference in coefficients estimators of the

mediated effect under an incorrect logistic and incorrect normality assumption (probit and χ2(2))

Sample Size

50 100 200 500 1000 5000

γ̂mα̂z µ = .484, σ = .447
Mean (µn) 0.588 0.528 0.508 0.492 0.487 0.484
Standard Deviation (σn) 0.928 0.610 0.529 0.475 0.459 0.449
Average Squared Distance 0.582 0.139 0.059 0.021 0.010 0.002

β̂z − γ̂z

Mean (µn) 0.418 0.386 0.377 0.368 0.365 0.364
Standard Deviation (σn) 0.630 0.460 0.411 0.377 0.368 0.361
Average Squared Distance 0.215 0.062 0.027 0.010 0.005 0.001

β̂logit.standard
z − γ̂z

Mean (µn) 0.891 0.674 0.624 0.596 0.587 0.582
Standard Deviation (σn) 2.110 0.885 0.692 0.613 0.590 0.577
Average Squared Distance 3.780 0.337 0.097 0.031 0.014 0.003
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Table 7: Example data set from Midwestern Prevention Project (N=864)
Mediator Treatment Group (1) Control Group (0)
Intention to use cigarettes Cigarette Use (1) No Use (0) Cigarette Use (1) No Use (0)
Yes (4) 19 9 20 9
Probably (3) 11 15 20 14
Don’t think so (2) 11 43 13 36
No (1) 32 353 30 229
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Appendix A: Mediated effects based on the product of

coefficients method

This section shows the consistency of the product of coefficients method for logistic regression when

Y |XMZ is given by Model 1 and the conditional mean of M |XZ is linear as in Equations 2 and

3. A formula for the variance of this product of coefficients estimator is then given. Define γ̂ as the

maximum likelihood solution for the logistic regression coefficients γ = (γ0,γ, γm, γz) in Equation

1, the standard logistic regression model of Y predicted by M as well as Z and X. As the sample

size gets large, γ̂ are asymptotically unbiased estimates for γ. Similarly for the regression of M

on Z adjusted for X in Equation 2, the least squares estimates α̂ are asymptotically unbiased

estimates for α provided the conditional mean is correctly specified as in Equation 3. Thus the

product of these estimates is consistent.

Further, the following sandwich-type variance estimates are consistent as well. First define the

ith observation’s score function as Sγi = ∂ log Pr{Y = yi|X = xi,M = Mi, Z = zi}/∂γ evaluated

at γ̂. The information matrix for α is defined as Iγ = −
∑n

i=1
∂2

∂γ∂γ′ log Pr{Y = yi|X = xi,M =

mi, Z = zi}. Then

Avar(γ̂) = I −1
γ (

n∑

i=1

SγiS
′
γi)I −1

γ (14)

Turning to the regression of M on Z and X, if fM |XZ;α(m|x, z) is known, it would be used

to maximize the corresponding likelihood. For example, if this distribution is normal, define

φ(u;µ, σ2) as the normal density. Then the ith observation’s score function, with parameters

θ = (α0,αx, αz, σ2
m.xz), is given by Sθi = ∂ log φ(mi;α0 + α′xi + αzzi, σ

2
m.xz)/∂θ evaluated

at the least squares solution θ̂. Similarly, the information matrix for this problem is given by
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Iθ = −
∑n

i=1
∂

∂θ′ Sθi . Then

Avar(θ̂) = I −1
θ (

n∑

i=1

SθiS
′
θi)I −1

θ (15)

and the diagonal element corresponding to αz, Avar(α̂z) is therefore a consistent estimate of the

variance of α̂z provided the mean of M is linear in X and Z.

If the underlying distribution for Y |XZ is not known, then consistent estimates of α can still be

obtained as long as the conditional model for the mean is correctly specified. In this case, the least

squares approach described above provides consistent estimates of both the regression parameters

and their standard errors [34].

Finally, we show that these GEE estimators of γ̂ and α̂z are asymptotically independent. Using

a Taylor expansion on the score function for γ,

γ̂ − γ = I −1
γ (

n∑

i=1

Sγi) + Op(n
−1) (16)

where Op(n
−1) is a random term that converges to a distribution with order n−1. Explicitly, the

ith observation’s contribution to the logistic score function, Sγi is

Sγi =
∂

∂γ
log Pr{Y = yi|X = xi, M = Mi, Z = zi} = (yi − pi)(1,xi,Mi, zi)

′ (17)

where pi = Pr{Y = 1|X = xi,M = Mi, Z = zi} = E(Y = 1|X = xi,M = Mi, Z = zi).

Also,

Iγ = −
n∑

i=1

∂2 log pi

∂γ∂γ′ =

n∑

i=1

pi(1 − pi)(1,x′
i,Mi, zi)

′(1,x′
i,Mi, zi) (18)

Note that like Iγ , α̂z depends only on T = {(xi,mi, zi), i = 1, . . . , n} and not on y. Then by
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conditioning first on T , we have

Acov(γ̂, α̂z) = E(γ̂ − γ)α̂z

= EM (EY ((γ̂ − γ)α̂z|T ))

= E(I −1
γ (

n∑

i=1

E(yi − pi|T )(1,xi,Mi, zi)
′)α̂z)

= 0

This result can be easily extended to any GEE type of estimator of γ, of which the maximum

likelihood estimator from an exponential family distribution is a special case.

44


