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PEPFAR

• Massive scale-up of ARV treatment

• 1.3 Million initiated ARV from 2004-2008

• Outcome results essential

• Required large-scale follow-up



Mbarara ISS

• Cohort of 3,340 HIV+ infected individuals

• Started on ARV from 1/04 to 7/07

• Followed through 7/1/07

• 56 died                                                       
2,530 alive as of 7/1/07                                    
715 lost to FU prior to 7/1/07



Multiple Events

• Three possible events

• Death

• Dropout

• Administrative Censoring

• Competing risks
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Notation
• Ci: time to administrative censoring             

always known

• Li: time to dropout                          
censored by Ci and Ti

• Ti: time to death                                          
censored by Ci and Li

• Xi: min(Ti,Ci), ∆i = I(Ti ≤ Ci)                         
data in absence of dropouts

• Robs=0 dropout, Robs=1 non-dropout



Administrative Censoring

• Patients can only dropout if                           
Li < min(Ti, Ci)

• Patients can only die if                                   
Di < min(Li, Ci)

• Some people may have dropout later....



Administrative Censoring

• (T,C) are independent                              
very standard assumption                            
violated if demographics change over time      

• Can be relaxed to (T,C) independent              
given a series of covariates

• Conditional on Robs, (Ti,Ci) NOT indep          
example of “collider” stratification                   
creates dependent censoring



Dependent Dropout

• (T,L) are likely correlated                             

• Dropout suggest ARV discontinuation

• Hastens death

• Not easily handled

• What about observing after dropout                                   
how about sampling?



Sampling Plan

• 3,340 HIV+ initiated ART

• Robs=1: n1=2,625 

• 2,569 Alive and in FU as of 7/1/09

• 56 Died in Follow-Up

• Robs=0:  n0=715, ñ0 =79                              

• 95 sought, 79 vital status ascertained



Advantages of Sampling

• Very flexible

• Sampling prob can vary by individual         
using ancillary data

• Valid framework for dependent censoring      
in a way that is model-independent                    
no need to specify cor(T,L)                                      
will get information on this



Horvitz Thompson

• Have finite population of size n

• Want to estimate                                          

• ξi=1 indicated if ith person sampled

• Sample with probability E(ξi=1)=πi

• HT estimator
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termed the second-order inclusion probability



Simple Sample

• Total population is n

• Sample with equal probability πi  = ñ/n

• Sample with replacement                               
chose ñ from n (putting balls back in jar)

• Sample with quota                                        
chose exactly ñ different from n

• Sample without quota                                 
chose ith person with probability ñ/n                                                

Same estimate, different variances!!



Second-Order Weights

πii πij

w/ replace (ñ/n)2 (ñ/n)2

quota ñ/n ñ(ñ-1)/n(n-1)

no quota ñ/n (ñ/n)2

under equal probability schemes



Variance for Finite Population

var{µ̂} =
(π−1 − 1)σ2

n

var{µ̂} =
(1− π)σ2

ñ
For the standard sample mean, π is effectively 0

var{x̄} =
σ2

ñ

n: size of total popn

ñ: size of sampled popn

under “quota sampling”



Double Sampling

• group of i=1,...,n subjects                             
sampled from a population                            
(first level of sampling)                                   
some additional data avail. (z1,...,zn)

• second level of data                                                  
richer data collection on subset                   
sampling determined by (z1,...,zn)                     
pr(ξi=1|zi)=πi

Neyman, 1938



Example: Two-Stage 
Case Control Study

• Bladder cancer case/control study

• Exposure: metal working fluids (MWF)

• Phase 1: Data collected including                                  
Q: “Have you ever worked in metal industry?”

• Phase II: Detailed work history/exposure 
collected

• Metal workers oversampled in Phase II



Other Examples

• Two-phase genotyping studies

• Nested case-control studies

• Case-cohort studies

• All valid, comparatively efft designs

• With significant cost savings



Back to Mbarara



Double Sample for Dropouts

• Robs=1: observed death/admin censoring

• data already completely observed

• sampling fraction 1.00

•  Robs=0: observed dropouts

• n0 dropouts

• sample ñ0  for vital ascertainment     

• sampling fraction  ñ0/n0 =  π



Observed Data

• (Xi,∆i) if ξi=1

• ignored otherwise                                      

• ξ=I if Robs=1 or Robs=0 & sampled

• pr(sampled | Robs=0) = π

• Data is MAR conditional on Robs



Frangakis and Rubin

• Double sampling estimate of survivor 
function

• Ignore data if ξ=0                                      
if dropout & not dble sampled, drop data

• Constructed survivor estimate

• Showed that (T,C) not independent           
conditional on the value of Robs

• Estimate hazard and transform to survival



Frangakis Rubin Estimator

consistent with a Gaussian limiting distribution



Their representation

• Cumulative hazard is weighted sum

• Of crude hazards in 2 groups

• Weight varies with time

• Not an intuitive representation                      
why does it work?



Double-Sampling

•        True cumulative hazard function

•        Nelson-Aalen estimator                         
if complete data avail on cohort

•        The FR estimator                                  
based on dble-sampled data                           

Λ(t)
Λ̃(t)

Λ̂(t)



More Notation

• N(t)=I(X ≤ t, Δ=1)

• Y(t) = I(X ≥ t)

• H1 : set of people with Robs=1                       
has size n1, ñ1 sampled (n1 = ñ1)                       
i in H1 πi= 1                      

• H0 : set of people with Robs=0                    
has size n0, ñ0  sampled                                                  
i in H0:  πi= ñ0/n0



Complete Data on Cohort
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Other Representation
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Horvitz Thompson
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Approximations

N̂1(t) = N̄1(t)
Ŷ1(t) = Ȳ1(t)

N̂0(t) −→ N̄0(t)
Ŷ0(t) −→ Ȳ0(t)



A Natural Estimator
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and has a IPW representation



But what about 
variance?



FR Variance



Two-Part Variance
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Variance Decomposition

σ2(t) : Total Variance

σ2
1(t) : Variance due to double sampling

σ2
2(t) : Variance if full cohort observed

Usual variance for Nelson-Aalen estimate
Easily estimated

HT type variance

Estimation more complicated



Nelson-Aalen Variance
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Double-Sample Variance
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The total variance
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Source of Variance
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Some observations

• Robs=1: no contribution to double-sample 
variance

• Robs=0: ratio of NA variance to FR variance  
= 1/π  = n0/ñ0                                                                   

just the ratio of sample size in Robs=0 
between DS data and full data

• Intuitive look at the variance



Variance Estimate

• Easily computed

• Demystifies the form

• Facilitates sample size calculations                 
look at effect of various sample fractions

• Performs great in simulations



Data Example

• Cohort of 3,340 HIV+ infected individuals

• Robs=1: n1=2,625 (56 died)

• Robs=0: n0=715, ñ0 =79 (26 died)

• π = 1/9.18 = 0.109

• Rate of death is about 16 times higher          
in dropouts compared to non-dropouts



FR and Naive Survival
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Relative Efficiency

• Trade-off between sampling fractions

• What is efficiency of sampling ρ dropouts      
compared to all dropouts

• Can be consistently estimated   

• Based on Mbarara data



Relative Efficiency
1

2
5

10
15

R
el

at
iv

e 
Ef

fic
ie

nc
y 

C
om

pa
re

d 
to

 C
om

pl
et

e 
C

oh
or

t

10% 30% 50% 70% 90%
Percentage of Dropouts Sampled



Future Directions

• Apply insights from survey statistics

• formulae and approximations

• post-stratification, calibration                   
auxiliary variables => more efficiency

• Look at using non-sample dropout data
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