Double-Sampling Designs for Dropouts

Dave Glidden Division of Biostatistics, UCSF 26 February 2010

http://www.epibiostat.ucsf.edu/dave/talks.html

Outline

- Mbarra's Dropouts
- Inverse Prob. Weights/Horvitz Thompson
- Double Sampling for Dropouts
- An IPW Estimator and Variance
- Future Directions

PEPFAR

- Massive scale-up of ARV treatment
- I.3 Million initiated ARV from 2004-2008
- Outcome results essential
- Required large-scale follow-up

Mbarara ISS

- Cohort of 3,340 HIV+ infected individuals
- Started on ARV from 1/04 to 7/07
- Followed through 7/1/07
- 56 died
 2,530 alive as of 7/1/07
 715 lost to FU prior to 7/1/07

Multiple Events

• Three possible events

- Death
- Dropout
- Administrative Censoring
- Competing risks

Notation

- C_i: time to administrative censoring always known
- L_i: time to dropout
 censored by C_i and T_i
- T_i: time to death censored by C_i and L_i
- $X_i: \min(T_i, C_i), \Delta_i = I(T_i \le C_i)$ data in absence of dropouts
- R^{obs}=0 dropout, R^{obs}=1 non-dropout

Administrative Censoring

- Patients can only dropout if L_i < min(T_i, C_i)
- Patients can only die if
 D_i < min(L_i, C_i)
- Some people may have dropout later....

Administrative Censoring

- (T,C) are independent very standard assumption violated if demographics change over time
- Can be relaxed to (T,C) independent given a series of covariates
- Conditional on R^{obs}, (T_i,C_i) NOT indep example of "collider" stratification creates dependent censoring

Dependent Dropout

- (T,L) are likely correlated
- Dropout suggest ARV discontinuation
- Hastens death
- Not easily handled
- What about observing after dropout how about sampling?

Sampling Plan

- 3,340 HIV+ initiated ART
- $R^{obs} = I: n_1 = 2,625$
 - 2,569 Alive and in FU as of 7/1/09
 - 56 Died in Follow-Up
- Robs=0: $n_0=715$, $\tilde{n}_0=79$
 - 95 sought, 79 vital status ascertained

Advantages of Sampling

- Very flexible
- Sampling prob can vary by individual using ancillary data
- Valid framework for dependent censoring in a way that is model-independent no need to specify cor(T,L) will get information on this

Horvitz Thompson

Have finite population of size n

• Want to estimate
$$\tilde{\mu} = n^{-1} \sum_{i=1}^{n} x_i$$

- $\xi_i = 1$ indicated if ith person sampled
- Sample with probability $E(\xi_i = I) = \pi_i$
- **HT estimator** $\hat{\mu} = n^{-1} \sum_{i=1}^{n} \frac{\xi_i}{\pi_i} x_i$

Variance

 $\operatorname{var}\{\sqrt{n}(\tilde{\mu}-\hat{\mu})\}\$

$$= n^{-1} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{\pi_{ij} - \pi_i \pi_j}{\pi_{ij} \pi_i \pi_j} \right) \xi_i \xi_j x_i x_j$$

 π_{ij} is the probability that i and j are selected termed the second-order inclusion probability

Simple Sample

- Total population is n
- Sample with equal probability $\pi_i = \tilde{n}/n$
- Sample with replacement chose ñ from n (putting balls back in jar)
- Sample with quota chose exactly ñ different from n
- Sample without quota chose ith person with probability ñ/n

Same estimate, different variances!!

Second-Order Weights

under equal probability schemes

	Π _{ii}	π_{ij}
w/ replace	(ñ/n)²	(ñ/n)²
quota	ñ/n	ñ(ñ-1)/n(n-1)
no quota	ñ/n	(ñ/n) ²

Variance for Finite Population

under "quota sampling"

$$\operatorname{var}\{\hat{\mu}\} = \frac{(\pi^{-1} - 1)\sigma^2}{n} \quad \text{n: size of total popn}$$

$$\operatorname{var}\{\hat{\mu}\} = \frac{(1-\pi)\sigma^2}{\tilde{n}}$$

ñ: size of sampled popn

For the standard sample mean, π is effectively 0

$$\operatorname{var}\{\bar{x}\} = \frac{\sigma^2}{\tilde{n}}$$

Double Sampling

Neyman, 1938

- group of i=1,...,n subjects sampled from a population (first level of sampling) some additional data avail. (z1,...,zn)
- second level of data richer data collection on subset sampling determined by $(z_1,...,z_n)$ $pr(\xi_i=1|z_i)=\pi_i$

Example: Two-Stage Case Control Study

- Bladder cancer case/control study
- Exposure: metal working fluids (MWF)
- Phase I: Data collected including
 Q: "Have you ever worked in metal industry?"
- Phase II: Detailed work history/exposure collected
- Metal workers oversampled in Phase II

Other Examples

- Two-phase genotyping studies
- Nested case-control studies
- Case-cohort studies
- All valid, comparatively efft designs
- With significant cost savings

Back to Mbarara

Double Sample for Dropouts

- R^{obs}=I: observed death/admin censoring
 - data already completely observed
 - sampling fraction 1.00
- R^{obs}=0: observed dropouts
 - n₀ dropouts
 - sample \tilde{n}_0 for vital ascertainment
 - sampling fraction $\tilde{n}_{0/n_0} = \pi$

Observed Data

- (X_i, Δ_i) if $\xi_i = I$
- ignored otherwise
- $\xi = I$ if $R^{obs} = I$ or $R^{obs} = 0$ & sampled
- pr(sampled | $R^{obs}=0$) = π
- Data is MAR conditional on R^{obs}

Frangakis and Rubin

- Double sampling estimate of survivor function
- Ignore data if ξ=0
 if dropout & not dble sampled, drop data
- Constructed survivor estimate
- Showed that (T,C) not independent conditional on the value of R^{obs}
- Estimate hazard and transform to survival

Frangakis Rubin Estimator

$$\hat{\Lambda}(t) := \sum_{g=0,1} \int_0^t \hat{w}_g(u) d\hat{\Lambda}_g^{\mathrm{crd}}(u),$$

where

$$\hat{w}_g(t) := \frac{\hat{\pi}_g(t)\hat{p}_g}{\sum_{g'=0,1}\hat{\pi}_{g'}(t)\hat{p}_{g'}}, \qquad \hat{\pi}_g(t) := Y_g(t)/n_g,$$

consistent with a Gaussian limiting distribution

Their representation

- Cumulative hazard is weighted sum
- Of crude hazards in 2 groups
- Weight varies with time
- Not an intuitive representation why does it work?

Double-Sampling

- $\bullet \Lambda(t)$ True cumulative hazard function
- $\tilde{\Lambda}(t)$ Nelson-Aalen estimator if complete data avail on cohort
- $\hat{\Lambda}(t)$ The FR estimator based on dble-sampled data

More Notation

- $N(t)=I(X \le t, \Delta=I)$
- $Y(t) = I(X \ge t)$
- H_1 : set of people with $R^{obs} = I$ has size $n_{I_i} \tilde{n}_I$ sampled $(n_I = \tilde{n}_I)$ i in $H_I \pi_i = I$
- H_0 : set of people with $R^{obs}=0$ has size $n_{0,} \tilde{n}_0$ sampled i in H_0 : $\pi_i = \tilde{n}_0/n_0$

Complete Data on Cohort

$$\bar{N}(t) = \sum_{g} \frac{n_g}{n} \bar{N}_g(t)$$

$$\bar{Y}(t) = \sum_{g} \frac{n_g}{n} \bar{Y}_g(t)$$

Other Representation

$$\Lambda(t) = \int_0^t \frac{\mathcal{N}(du)}{\mathcal{Y}(u)}$$

as $n \to \infty$
 $\bar{N}(t) \to \mathcal{N}(t)$
 $\bar{Y}(t) \to \mathcal{Y}(t)$

$$\tilde{\Lambda}(t) = \int_0^t \frac{\bar{N}(du)}{\bar{Y}(u)}$$

Approximations

A Natural Estimator

$$\hat{\Lambda}(t) = \int_0^t \frac{\hat{N}(du)}{\hat{Y}(u)}$$

identical to FR estimator and to

$$\hat{\Lambda}(t) = \int_0^t \frac{\sum_i \frac{\xi_i}{\pi_i} N_i(du)}{\sum_i \frac{\xi_i}{\pi_i} Y_i(u)}$$

and has a IPW representation

But what about variance?

where

$$V_{\{p_1\}}(s,t) := p_1 p_0 \int_0^t d\Lambda_{\{p_1\}}^{\mathrm{crd}}(u) \int_0^s d\Lambda_{\{p_1\}}^{\mathrm{crd}}(u^*)$$

and, for $k_0 = 1/\{p_0 p^{(S)}\}, k_1 = 1/p_1$, and g = 0, 1,

$$V_{\{\pi_g\}}(s,t) := k_g \int_0^t \int_0^s \left[\pi_g \{ \max(u, u^*) \} - \pi_g(u) \pi_g(u^*) \right] \\ \times d\Lambda_{\{\pi_g\}}^{\mathrm{crd}}(u^*) d\Lambda_{\{\pi_g\}}^{\mathrm{crd}}(u),$$
$$V_{\{\Lambda_g\}}(s,t) := k_g \int_0^{\min(s,t)} \frac{\{ w_g(u) \}^2}{\pi_g(u)} d\Lambda_g^{\mathrm{crd}}(u)$$

and

$$V_{\{\pi_g,\Lambda_g\}}(s,t)$$

$$:= -k_g \int_0^{\min(s,t)} \int_u^s \frac{\pi_g(u^*)}{\pi_g(u)} w_g(u) d\Lambda_{\{\pi_g\}}^{\operatorname{crd}}(u^*) d\Lambda_g^{\operatorname{crd}}(u).$$

Two-Part Variance

$$\sqrt{n}\{\hat{\Lambda}(t) - \Lambda(t)\} = \sqrt{n}\{\hat{\Lambda}(t) - \tilde{\Lambda}(t)\} + \sqrt{n}\{\tilde{\Lambda}(t) - \Lambda(t)\}$$

last two terms are independent

$$\sigma^{2}(t) = \operatorname{var}\{\hat{\Lambda}(t) - \Lambda(t)\}$$

$$\sigma^{2}_{1}(t) = \operatorname{var}\{\hat{\Lambda}(t) - \tilde{\Lambda}(t)\}$$

$$\sigma^{2}_{2}(t) = \operatorname{var}\{\tilde{\Lambda}(t) - \Lambda(t)\}$$

$$\sigma^{2}(t) = \sigma^{2}_{1}(t) + \sigma^{2}_{2}(t)$$

Variance Decomposition

- $\sigma^2(t)$: Total Variance
- $\sigma_2^2(t)$: Variance if full cohort observed Usual variance for Nelson-Aalen estimate Easily estimated
- $\sigma_1^2(t)$: Variance due to double sampling HT type variance Estimation more complicated

Nelson-Aalen Variance

$$\begin{split} \sigma_{2}^{2}(t) &= \int_{0}^{t} \frac{\Lambda(du)}{\mathcal{Y}(u)} \\ \hat{\sigma}_{2}^{2}(t) &= \int_{0}^{t} \frac{\hat{\Lambda}(du)}{\hat{Y}(u)} \\ &= \frac{n_{0}}{n} \int_{0}^{t} \frac{\hat{N}_{0}(du)}{\hat{Y}^{2}(u)} + \frac{n_{1}}{n} \int_{0}^{t} \frac{\hat{N}_{1}(du)}{\hat{Y}^{2}(u)} \\ &= \int_{0}^{t} \frac{\hat{N}(du)}{\hat{Y}^{2}(u)} \end{split}$$

Double-Sample Variance

looong HT-based variance arguments lead to

 $\hat{\sigma}_1^2(t) = (\pi^{-1} - 1) \frac{n_0}{n} \int_0^t \frac{\hat{N}_0(du)}{\hat{Y}^2(u)}$ $= n^{-1} \sum_{i: R^{obs} = 0} \int_0^t \frac{\xi_i}{\pi_i} \frac{(\pi_i^{-1} - 1)N_i(du)}{\tilde{Y}^2(u)}.$ $= n^{-1} \sum_{i=1}^{n} \int_{0}^{t} \frac{\xi_{i}}{\pi_{i}} \frac{(\pi_{i}^{-1} - 1)N_{i}(du)}{\hat{Y}^{2}(u)}$

The total variance

 $\hat{\sigma}^2(t) = \hat{\sigma}_1^2(t) + \hat{\sigma}_2^2(t)$ $= n^{-1} \sum_{i=1}^{n} \int_{0}^{t} \frac{\xi_{i}}{\pi_{i}} \frac{N_{i}(du)}{\hat{Y}^{2}(u)} +$ $n^{-1} \sum_{i=1}^{n} \int_{0}^{t} \frac{\xi_{i}}{\pi_{i}} \frac{(\pi_{i}^{-1} - 1)N_{i}(du)}{\hat{Y}^{2}(u)}$ $= n^{-1} \sum_{i=1}^{n} \int_{0}^{t} \frac{\xi_{i}}{\pi_{i}} \frac{\pi_{i}^{-1} N_{i}(du)}{\hat{Y}^{2}(u)}$

Some observations

- R^{obs}=1: no contribution to double-sample variance
- $R^{obs}=0$: ratio of NA variance to FR variance = $I/\pi = n_0/\tilde{n}_0$ just the ratio of sample size in Robs=0 between DS data and full data
- Intuitive look at the variance

Variance Estimate

- Easily computed
- Demystifies the form
- Facilitates sample size calculations look at effect of various sample fractions
- Performs great in simulations

Data Example

- Cohort of 3,340 HIV+ infected individuals
- R^{obs}=1:n₁=2,625 (56 died)
- Robs=0: n_0 =715, \tilde{n}_0 =79 (26 died)
- $\pi = 1/9.18 = 0.109$
- Rate of death is about 16 times higher in dropouts compared to non-dropouts

FR and Naive Survival

Days since initiation of ART

Relative Efficiency

- Trade-off between sampling fractions
- What is efficiency of sampling ρ dropouts compared to all dropouts
- Can be consistently estimated
- Based on Mbarara data

Relative Efficiency

Future Directions

- Apply insights from survey statistics
 - formulae and approximations
 - post-stratification, calibration auxiliary variables => more efficiency
- Look at using non-sample dropout data

Acknowledgement

- Jeff Martin
- Elvin Geng
- Constantin Yiannoutsos
- Mbarara ISS clinic
- East Africa Region of IeDEA
- Chuck McCulloch