Causal Inference Issues in the iPrEx Trial

Dave Glidden
UC San Francisco

http://www.epibiostat.ucsf.edu/dave/talks.html 01/23/09

iPrEx Trial

- Funded by NIAID/Gates
- 3,000 high risk HIV- MSM
- Randomized double-blinded
- Daily TDF/FTC (truvada) or placebo
- Followed for HIV infection, safety

PrEP

- Pre-Exposure Prophylaxis for HIV
- Anti-HIV drugs taken before HIV exposure
- New/Old concept: ACTG 076
- Chemoprophylaxis successful for.. malaria,TB, meningitis
- Raises difficult issues: safety, cost, behavior
- HIV prevention trials: 4 for 25 (Padian 2007)

TDF/FTC

(truvada)

- Dosing: long intracellular half life
- Tolerable
- Positive animal data
- Co-formulated into single daily pill TDF = tenofovir + FTC $=$ emtricitabine
- Both patented by Gilead
- FDA approved: fewer regulatory hurdles unlike microbicides, vaccines

Power/Sample Size

- I,500 subjects/arm, 10% loss to follow-up
- Follow-up until 48 weeks for last person
- 85 events (3% seroincidence yearly)
- $\mathrm{H}_{0}: 30 \%$ efficacy, $\mathrm{H}_{\mathrm{a}}: 60 \%$ efficacy
- Power: I-sided power 0.83, 2-sided 0.74

Study Power - 85 Events

Trial Outcomes

- HIV Seroconversion
- Adverse events (especially renal, liver)
- Adherence
- HIV-RNA, CD4 count, resistance if participant is infected with HIV

Hypothetical Results

	HIV +	HIV-
Truvada	20	1480
Placebo	65	1435

$H R=0.30,95 \%$ Confidence Int. (0.18, 0.55)

Mutations

- Does truvada promote resistance virus?
- Resistance diminishes treatment options
- Maybe be used in resource limited settings
- Mutation is a trait of infected participants creates a causal inference issue

Mutation Data

- Proportion of mutants
- Placebo: 23\%
- TDF/FTC: 75\%
- Pearson X^{2} : $18.1, \mathrm{p}<0.001$
- Does TDF/FTC promote resistance?

Mutation Data

- Proportion of mutants
- Placebo: $23 \%=15 / 65$ (I5 MT, 50 WT)
- TDF/FTC: $75 \%=15 / 20$ (I5 MT, 5 WT)
- Pearson X^{2} : $18.1, \mathrm{p}<0.001$
- Does TDF/FTC promote resistance?

Note

- Analyses involves only 85 participants
- 65 on placebo and 20 on FTC/TDF
- Spirit of clinical trials: like v. like compare similar populations
- Are these two groups similar?

Intention to Treat

- Compare outcomes in comparable population
- Only true comparable population is all randomized subjects
- Answer can be unsatisfying

Intent to Treat

	HIV+/MT	HIV- orWT
Truvada	15	1485
Placebo	15	1485

Mixes up HIV infection and mutations

A Scenario

- Mutations due to infection with resistant virus
- TDF/FTC does not protect against resistant virus
- Exposures to HIV similar in the two groups

Placebo Group

- I,500 total participants
- 500 exposed to HIV (450 WT, 50 MT)
- 50/450 WT exposed are infected
- I5/50 MT exposed are infected
- 65 HIV+: 50 WT, I5 MT

TDF/FTC Group

- I,500 total participants
- 500 exposed to HIV (450 WT, 50 MT)
- 5/450 WT exposed are infected
- I5/50 MT exposed are infected
- 20 HIV+: 5 WT, I5 MT

TDF/FTC Group

Placebo

	HIV+	HIV-	
MT	50	400	450
WT	15	35	50
None	0	I,000	I,000
	65		I,500

FTC/TDF

	HIV+	HIV-	
MT	5	495	450
WT	I5	35	50
None	0	I,000	I,000
	20		I,500

Comparison

- 3 strata defined by exposure to HIV no exposure/wild-type/mutant
- Comparison by strata: no excess risk of mutation
- Coherent picture of effect of FTC/TDF by mutation
- Must believe strata are comparable

Causal Inference

- Theory largely developed by Rubin
- Define population $P: i=I, \ldots, n$
- Counterfactual: ($\mathrm{Y}_{\mathrm{i} 0}, \mathrm{Y}_{\mathrm{il}}$)
$\mathrm{Y}_{\mathrm{i} 0}$: ith outcome, assigned to placebo $Y_{i l}$: ith outcome, assigned to TDF/FTC
- Compare $\operatorname{Pr}\left(Y_{i l}=I\right) / \operatorname{Pr}\left(Y_{i 0}=I\right)$

Causal Inference

- Can't observe counterfactuals
- Either observed $\mathrm{Y}_{i 0}$ or Y_{il}
- Randomization does the "right" thing
- Provides a rigorous causal framework

Extended to subsets

- Imagine there are K strata in the popn
- Suppose P is composed of $P_{1}, \ldots P_{K}$
- Causal effect with P_{k} is
$\operatorname{pr}\left(Y_{i l}=I\right) / \operatorname{pr}\left(Y_{i 0}=I\right)$ for i in P_{k}
- Can define subset at baseline (e.g., age, \# of partners at enrollment)

Principal Stratification

- Define latent subgroups
- Group I: Never infected $\left(Y_{i 0}=Y_{i l}=0\right)$
- Group 2: Infected under PLC ($\mathrm{Y}_{\mathrm{i} 0}=\mathrm{I}, \mathrm{Y}_{\mathrm{il}}=0$)
- Group 3: Infected under drug ($\left.\mathrm{Y}_{\mathrm{i} 0}=0, \mathrm{Y}_{\mathrm{il}}=\mathrm{I}\right)$
- Group 4: Always infected $\left(Y_{i 0}=Y_{i l}=I\right)$

Latent Groups

	$Y_{i l}=I$	$Y_{i l}=0$
$Y_{i 0}=1$	$P 11$	$P 10$
$Y_{i 0}=0$	$P 01$	$P 00$

$R R=\left(\mathrm{P}_{\|}+\mathrm{PO}_{\mathrm{I}}\right) /\left(\mathrm{P}_{\|}+\mathrm{P}_{\mathrm{I}}\right)$
$\mathrm{H}_{0}: \mathrm{p}_{10}=\mathrm{p} 01$

Principal Strata

- Latent
- But conceptually exist a priori
- Not affected by the treatment
- Form a possible causal framework

Effect by Strata

- Group I: Never infected no benefit or harm from rx -- no mutations
- Group 2: Infected under PLC PLC worse even if virus is MT
- Group 3: Infected under drug drug worse even if virus is MT
- Group 4: Always infected MT comparison is very relevant

Casual Comparison

Restricted to Stratum 4

Answers a Question

"If infected despite TDF/FTC, what is chance of mutant virus compared to if he had forgone PrEP treatment?"
-Gilbert et al (2003)

Our Problem

- The strata are latent
- Have some information:

HIV+ on TDV: in either Groups 3 or 4 HIV+ on placebo: either Group 2 or 4

- Strata membership unknowable need to make external assumptions can make meaningful sensitivity analyses

Some Previous Work

- Frankgakis \& Rubin, Biometrics 58: 21-29
- Gilbert et al, Biometrics, 59:53I-4I
- Shepherd et al, Biometrics, 62:332-342

Some Assumptions

- Classic causal assumption: SUTVA data for i not affected by rx for j suspect in small sexual networks
- $\operatorname{pr}\left(\mathrm{Y}_{\mathrm{i} 0}=\mathrm{I}, \mathrm{Y}_{\mathrm{i}}=0\right)=0=>\operatorname{pr}\left(\mathrm{Y}_{\mathrm{i}}=\mathrm{I} \mid \mathrm{Y}_{\mathrm{il}}=\mathrm{I}\right)$ HIV+ on TDV: belong to Group 4

Placebo HIV+

- $\mathrm{RE}=\mathrm{I}-\mathrm{RR}$
- $R R=\left(p_{\|}+p_{01}\right) /\left(p_{\|}+p_{⿺}\right)=>$ $R E=P_{01} /\left(p_{1}+{ }^{+}{ }_{10}\right)=$ probability in group 2 given HIV on placebo
- Fraction of HIV+ on placebo in the always infected $=70 \%$
- About 20 in always infected on placebo

Sensitivity Analysis

- Want to compare prevalence of mutations in group 4 between placebo and truvada
- By assumption, truvada $=15 / 20$
- For placebo = ??/ ~20
- can explore values for ??
with 15 mutations can between 0 and 15

Gilbert et al

- Considered comparison of HIV-RNA in HIV+ in a vaccine study
- Y denotes HIV-RNA after infection
- $p(y)=\operatorname{pr}($ grp $4 \mid$ HIV+ placebo, $Y=y)$
- $\operatorname{logit}(p(y))=\alpha+\beta y$
- β indexes selection

Selection Model

- $\beta>0$, higher VL $=>$ more likely in group 4 high VLs on placebo compared to TDF/FTC
- $\beta<0$, higher VL $=>$ less likely in group 4 lowVLs on placebo compared to TDF/FTC
- $\beta=0$, no VL difference between group 3 \& 4 direct comparison of mean VL
- Higher the VE, the wider effects of sensitivity are

Principal Stratification

- Clarifying framework
- Puts these comparisons in causal framework
- But, not identifiable. Permits informed sensitivity analyses
- Especially if drug effect is adverse bounds post-randomization bias
- Can give wide interval if RE is large

Wide Applications

- Missing Data due to death
- Informative dropouts
- Adjustment for compliance

Many Thanks

- Tor
- Estie
- NIAID
- Bill and Melinda Gates Foundation

