Probability Sampling in a Bathhouse Setting:

 Purpose, Practice and Practicality presented byThe Venues Team

The Venues Team

Justin Bailey
Diane Binson
Johnny Blair
Scott Carroll
Paul Cotten
Louis Cullen
Jason Euren
Trevor Hoppe
James Moser
Gabriel Ortiz
Lance Pollack
Mateo Rutherford
Bob Siedle-Khan
Ted Tallase
Bill Woods

... and all the LMOE I and II teams

Sex Venues

clubs

cruising areas

MSM Population
sex venue - users
engage in risky sex

Prevalence of Risky Practices

	Cruisers $(\mathbf{n}=515)$ $\%$	Bathers $(\mathbf{n}=\mathbf{3 2 6})$ $\%$	Multi- Venue Users $(\mathbf{n}=481)$ $\%$	Sig.
Sexual Practices	20.0	33.9	50.4	$*$
UAI with non-primary partner	4.3	10.1	21.6	$*$
UAI in public setting	25.3	51.6	69.9	$*$
Group Sex	2.3	9.1	14.5	$* *$
\quad UAI in group setting				$*$
Number of Partners	8.1	14.8	33.2	$*$
26+ partners in last yeart	5.7	12.3	30.7	$*$
$21+$ one-night stands in last yeart				

*Significant difference ($\mathrm{p}<.0167$) between all groups
**Significant difference (p <.0167) between all groups except bathers \& multi -venue users
Multi-venue users are the most risky

Urban Men's Health Study (Binson et al, AJPH, 2001, 91:1482-1486)

But UMHS data can't tell us where risk happens, so...

What goes on in a club?

... to find out

Designed an EXIT survey

Used a probability sample design

Probability Sample Design

Primary goal is
 REPRESENTATIVENESS

-Advantage - completely takes any choice out of the researcher's hand.

- Confident can generalize findings to the population of interest.

Major Principle of Probability Sampling

- Every member of population of interest must have known and nonzero probability of being selected.
- Key word is "known."

Probability sampling in a bathhouse (LMOE I \& II)

- 2-stage time design

Randomly select time shifts
Randomly select patrons within shifts

- Bathhouse open - 24 /7

Constructed 3-hour shifts
Yields 8 shifts/day \& 56 shifts/week

Probability sampling in a bathhouse

- Shifts randomly selected
-based on estimates of flow of patrons exiting each shift
- Flow of patrons - exit counts
-start with relatively inexact counts
-adjust with actual on-going exit counts

Probability sampling in a bathhouse

Number of shifts/week

- \# of interviews want each week
- \# of staff can manage

Patrons selected randomly in each shift
Each shift assigned unique

- random start,
- sampling interval

Practice

Challenge \#2:
 A constant flow of data between the sampling statistician and counter

Sampling statistician provides weekly schedule with the number of shifts per week including, shift date, club, start time, sampling interval or " N " and random start or " R ".

What goes into making it work?

Practicality

Role-plays:

-Basic counting and recruiting.
-"Why not me?"
-"Not me!"
-Too many men.
\qquad
Page of
Site ID (A) (B)
Shift \# \qquad
Start time: \qquad : \qquad $\mathrm{R}=$ \qquad
End time: \qquad : \qquad $\mathrm{N}=$ \qquad

Date: \qquad / \qquad / 07
Q1: \qquad

Staff: \qquad
Staff: \qquad

Putting it all together: Connections Study

probability sampling

high-risk population

qualitative interviewing

The Connections Study

Use probability sampling (and really great recruiters) to get men leaving clubs to complete an ACASI exit survey which immediately (and unobtrusively) identifies the high-risk men and then recruit those men into qualitative interviews off-site.

Sounds simple, right?

	LMOE I \& II	Connections
Dates	Thanksgiving - New Year's Day $(2001 ~ \& ~ 2002)$	$3 / 3 / 2007-8 / 31 / 2007$
Data collection period	5 weeks each	26 weeks (6 months)
Shift length	3 hours	2 hours
Sampling frequency	$15-20$ shifts/week	$4-6$ shifts/week
Number of shifts / total	-100	140
Shift logistics	$1-4$ shifts/day everyday	Up to 2 shifts at same time at different sites
Number of surveys	400	440
Recruiting staff / total	24	12
Recruiting staff per shift	3	2
Clubs	1	2
Times	24 hours, 7 days a week	4 p.m. -6 a.m. weekdays, 24 hours at weekends
Data collection method	Interviewer-administered survey on paper in a private room	Audio Computer Assisted Self- Interview in the lobby
Unique issue	Conversational interviewing	Recruiting for qualitative interview

Further reading:

Differential HIV Risk in Bathhouses and Public Cruising Areas
Diane Binson; William J Woods; Lance Pollack; Jay Paul; Ron Stall; Joseph A C...American Journal of Public Health; Sep 2001; 91, 9; ABI/INFORM Global pg. 1482

Probability Sample Estimates of Bathhouse Sexual Risk Behavior William J. Woods, PhD,* Diane Binson, PhD,* Johnny Blair, BA, † Lei Han, PhD,* Freya Spielberg, MD, \ddagger and Lance M. Pollack, PhD*
Acquir Immune Defic Syndr Volume 45, Number 2, June 1, 2007

