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1. Introduction:  Examples 
 

Example 1:  Measuring cognitive decline in elderly women 
(Women Who Maintain Optimal Cognitive Function into Old 
Age.  Barnes DE, Cauley JA, Lui L-Y, Fink HA, McCulloch CE, 
Stone KL, Yaffe K.  J Amer Geriatics Soc, 2007).  A modified 
Mini-Mental status examination was given at baseline and years 
6, 8, 10 and 15 in a prospective cohort study (Study of 
Osteoporotic Fractures).  Which participants are thought to be in 
mental decline and what predicts that decline? 



Example 2:  Effect of pre-hypertension at an early age in the 
CARDIA study. (Prehypertension During Young Adulthood and 
Presence of Coronary Calcium Later in Life: The Coronary 
Artery Risk Development In Young Adults (CARDIA) Study.  
MJ Pletcher, K Bibbins-Domingo, CE Lewis, G Wei, S Sidney, 
JJ Carr, E Vittinghoff, CE McCulloch, SB Hulley, submitted).  
Blood pressure measured every five years since 1986.  How to 
approximate previous and cumulative blood pressure exposure?   
 
 



Example 3:  Predicting those at risk for developing high blood 
pressure in HERS (The Heart and Estrogen Replacement Study - 
Hulley, et al, J. American Medical Association, 1998).  HERS 
was a randomized, blinded, placebo controlled trial for women 
with previous coronary disease.  We will use it as a prospective 
cohort study for prediction of high blood pressure.  2,763 women 
were enrolled and followed yearly for 5 subsequent visits.   We 
will consider only the subset that were not diabetic and with 
systolic blood pressure less than 140 at the beginning of the 
study.  



2. Mixed models and prediction of random effects 
 
One way to address the questions above is to utilize mixed models 
and derive predicted values of the random effects.   
 
Example 1: (cognitive decline): 
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Some realistic but made up data: 
 
. table visit, c(mean mmse n mmse sd mmse) 
 
------------------------------------------ 
    visit | mean(mmse)  N(mmse)  sd(mmse) 
----------+------------------------------- 
        0 |   27.08       2,031    2.2 
        1 |   27.17       1,931    2.3 
        2 |   27.10       1,850    2.3 
        3 |   27.08       1,750    2.3 
        4 |   27.04       1,361    2.3 
        5 |   27.10         269    2.2 
------------------------------------------ 
  
 

So little change in average MMSE over time. 



xi: xtmixed mmse visit exercise avgdrpwk || pptid: visit, cov(uns) 
 
Performing EM optimization:  
 
Performing gradient-based optimization:  
 
Iteration 0:   log restricted-likelihood = -11662.158   
Iteration 1:   log restricted-likelihood =  -11662.14   
Iteration 2:   log restricted-likelihood =  -11662.14   
 
Computing standard errors: 
 
Mixed-effects REML regression       Number of obs      =      9110 
Group variable: pptid               Number of groups   =      2032 
 
                                    Obs per group: min =         1 
                                                   avg =       4.5 
                                                   max =         6 
 
                                    Wald chi2(3)       =     27.24 
Log restr-likelihood =  -11662.14   Prob > chi2        =    0.0000 



------------------------------------------------------------------ 
     mmse |    Coef.  Std. Err.    z   P>|z|  [95% Conf. Interval] 
----------+------------------------------------------------------- 
    visit |-.0060353  .0059123  -1.02  0.307 -.0176231    .0055526 
 exercise | .0773954  .0179999   4.30  0.000  .0421162    .1126746 
 avgdrpwk |-.0097331  .0037005  -2.63  0.009 -.0169859   -.0024803 
    _cons | 27.11017  .0495455 547.18  0.000  27.01307    27.20728 
------------------------------------------------------------------ 
 
------------------------------------------------------------------ 
Random-effects Parameters | Estimate  Std.Err. [95% Conf.Interval] 
--------------------------+--------------------------------------- 
pptid: Unstructured       | 
                 sd(visit)| .1942305  .005721  .183333    .2057752 
                 sd(_cons)| 2.158639  .034978  2.09115    2.228296 
         corr(visit,_cons)|-.0426722  .031013 -.103225    .0181959 
--------------------------+--------------------------------------- 
              sd(Residual)|  .481975  .004743  .472767    .4913616 
------------------------------------------------------------------ 
LR test vs. lin regression: chi2(3) = 17033.5  Prob > chi2 = 0.000 
 



. predict rslopedev rintdev, reffects 

. gen predslope=_b[visit]+rslopedev 

. collapse rslopedev rintdev predslope, by(pptid) 

. gen deltammse=6*predslope 
 
. summarize 
 
 Variable |   Obs     Mean    Std. Dev.       Min      Max 
----------+----------------------------------------------- 
    pptid |    2032   1394.65   794.41         1      2761 
rslopedev |    2032   1.3e-10   .1421     -.7615     .9239 
  rintdev |    2032   3.9e-10   2.133    -9.8275    3.0384 
predslope |    2032  -.006035   .1421     -.7676     .9178 
deltammse |    2032  -.036211   .8530    -4.6057    5.5071 
 
. summarize deltammse predslope if deltammse<-2 
 
 Variable |   Obs    Mean   Std. Dev.       Min        Max 
----------+----------------------------------------------- 
deltammse |    40  -2.634   .4937       -4.6057    -2.0331 
predslope |    40  -.4390   .0822        -.7676     -.3388 



Example 2: (pre-hypertension): 
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The area under the predicted blood pressure trajectory between 120 
and 140 mmHg was integrated over time as a cumulative pre-
hypertension exposure (in years of mmHg).  This was then used as 
a predictor of coronary calcification.  



 



Example 3: (high blood pressure): 
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Predicted values of random effects available from gllamm or the 
new (Ver 10) multilevel logit command xtmelogit 



Standard software (e.g., SAS Proc MIXED or NLMIXED; 
Stata xtmixed or xtlogit) fit the models using regular 
or restricted maximum likelihood.  So they use a parametric 
assumption for both the distribution of the outcome and the 
distribution of the random effects, the latter typically that the 
distributions are normal.   
 
Key question:  Is the parametric assumption of the 
random effects distribution important?   
 
This is especially crucial since we don’t get to directly 
observe the random effects.  Unfortunately, the predicted 
random effects may not reflect the shape of the underlying 
distribution.  (More on this point later). 



3. Review of impact of misspecification in mixed models 
 
A number of investigations have focused on the effect of 
misspecifications in parametric mixed models.  They can be 
grouped as: 
 
1. Getting the distributional shape wrong. 
2. Falsely assuming the random effect is independent of the 

cluster size.   
3. Falsely assuming the random effect is independent of 

covariates, e.g.,  
a. Mean of random effects distribution could be associated 

with a covariate. 
b.Variance of random effects distribution could be associated 

with a covariate.  



Most investigations have concentrated on the impact on estimation 
of the fixed effects portion of the model.  
 

General assessment: 
1) Getting the distributional shape wrong has little impact on 
inferences about the fixed effects.  
 

2) Incorrectly assuming the random effects distribution is 
independent of the cluster size may affect inferences about the 
intercept, but does not seriously impact inferences about the 
regression parameters.   
 

3) However, assuming the random effects distribution is 
independent of the covariates when it is not is potentially serious.  
(Related to mean:  Neuhaus and McCulloch, JRSSB, 2006; related 
to the variance:  Heagerty and Kurland, Biometrika, 2001).  



What about inference about the predictions of the 
random effects?  
 
We’ll concentrate on the issue of wrong distributional shape, 
where fixed effects inferences seem largely unaffected.  
 
Intuition:  the assumed form of the random effects distribution 
may be a more crucial assumption in this case.  



4. Theoretical calculations (Linear Mixed Model) 
 

First consider an easy situation.  Assumed model is a one-way 
random effects model with known intercept and variance 
components and normally distributed random effects: 
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The Best Linear Unbiased Predictor is defined as the prediction, ib
~

, 
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which is minimized when the nonnegative quantity is chosen to be 
zero, i.e., ].|[

~
ybEb ii =  

 



For our model, the Best Linear Unbiased Predictor is given by 
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Writing this out: 
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Conditional on ib , the itY  are independent ),( 2
εσµ ibN + .  So 
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and ib

~
 is conditionally biased.  Since the calculations are 

conditional on ib , results do not depend on the distribution of the ib  
and so the conditional bias does not depend on the distribution.   
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So ib

~
 converges in probability to the true value as .∞→in   But 

asymptotic calculations as ∞→in  are not usually of interest for a 
random effects model.  



What does the distribution of the ib
~

 look like?   
 
And what if the assumption of normality for the bi is incorrect, i.e., 
not normal?   
 
If ni is large then each ib

~
 is close to ib  and hence the distribution is 

approximately correct.   
 
But what about the case when ni is not large, the usual case of 
interest? 
 
Then the distribution of ib

~
 is the convolution of the true density 

with the conditional density of ib
~

 given ib .  



For example, suppose the true density is exponential(1), shifted to 
have mean 0.  Then the density of ib

~
 is given by 
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which is straightforward to evaluate numerically:   
 



 



 



 



 



 







What is the BLUP under the exponential assumption? 
 
Model: 
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where )(tφ  and )(tΦ  are the standard normal p.d.f. and c.d.f. 
 
How do the assumed normal and assumed exponential BLUPs 
compare? 



BLUPS Under Different Distributional Assumptions
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5. Theoretical calculations (Binary matched pairs) 
 

Assumed model 
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Since there are only 4 data configurations per cluster there are only 
four possible values for ib

~
, for a given set of parameter values.  For 

example, when ,121 == ii yy  ib
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These depend on the assumed distribution.  The probabilities of the 
four (actually three) values depends on the true distribution.   

Probability Distribution for BLUPs
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It is also straightforward to calculate the mean square error of 
prediction using the assumed and true models under the true 
model.  For example, if the assumed model is normal, but the true 
is exponential here are some values of the mean square error of 
prediction: 
 

Mean squared error of prediction MSEP = ])
~

[( 2
ii bbE −  with 

1,0 == σµ : 
 

β   Normal 
(assumed) 

Exponential  
(true) 

Percent 
increase 

0  0.77 0.75 3.5% 
1  0.82 0.79 3.0% 
2  0.85 0.83 2.1% 
3  0.87 0.85 1.4% 



6. Simulation 
 
We simulated data from the one-way random model: 
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with q = 10 = ni and using the same random numbers for both the 
normal and exponential random effects (and the same error terms).  
10,000 replications.  An assumed normal model was fit.  



Simulation results 
 

Estimates of the parameters 
 

Normal  True Ave SD Ave SE 
µ   1 1.00 0.33 0.32 

)ln( 2
εσ   0 -0.01 0.075 0.075 

)ln( 2
bσ   0 -0.07 0.29* 0.27* 

Exponential      
µ   1 1.00 0.33 0.31 

)ln( 2
εσ   0 -0.01 0.075 0.075 

)ln( 2
bσ   0 -0.18* 0.47 0.29 

 

  *Excludes one outlier 



Estimates of fixed effects parameters are little affected. 
 

Estimates of the parameters 
 

Normal  True Ave SD Ave SE 
µ   1 1.00 0.33 0.32 

)ln( 2
εσ   0 -0.01 0.075 0.075 

)ln( 2
bσ   0 -0.07 0.29* 0.27* 

Exponential      
µ   1 1.00 0.33 0.31 

)ln( 2
εσ   0 -0.01 0.075 0.075 

)ln( 2
bσ   0 -0.18* 0.47* 0.29* 

*Excludes one outlier 



As is the estimate of log of the residual variance. 
 

Estimates of the parameters 
 

Normal  True Ave SD Ave SE 
µ   1 1.00 0.33 0.32 

)ln( 2
εσ   0 -0.01 0.075 0.075 

)ln( 2
bσ   0 -0.07 0.29* 0.27* 

Exponential      
µ   1 1.00 0.33 0.31 

)ln( 2
εσ   0 -0.01 0.075 0.075 

)ln( 2
bσ   0 -0.18* 0.47* 0.29* 

*Excludes one outlier 



But the estimate of the random effects variance is off. 
 

Estimates of the parameters 
 

Normal  True Ave SD Ave SE 
µ   1 1.00 0.33 0.32 

)ln( 2
εσ   0 -0.01 0.075 0.075 

)ln( 2
bσ   0 -0.07 0.29* 0.27* 

Exponential      
µ   1 1.00 0.33 0.31 

)ln( 2
εσ   0 -0.01 0.075 0.075 

)ln( 2
bσ   0 -0.18* 0.47* 0.29* 

*Excludes one outlier 



Confidence interval coverage for µ was slightly lower than 
nominal for the normal (92%), and low for the exponential 
(88%).  
 
Mean square error of prediction for the BLUPs was 1.87 for 
the normal model and 1.84 for the exponential.  
 



Do the BLUPs calculated under the assumption of normality 
reflect the true underlying shape (exponential)? 
 
For data simulated with normally distributed random effects 
the average skewness was -0.01 and the average kurtosis was 
2.50 (with a normal having values 0 and 3).  
 
For data simulated with exponentially distributed random 
effects the average skewness was 0.85 and the average 
kurtosis was 3.14 (with an exponential(1) having values 2 and 
9).   



7. Example (HERS) 
 
Recall the HERS example:  We will consider the 1,378 women 
who did not have high blood pressure and were not diabetic at the 
baseline visit.  We will use the baseline and visits 1 through 3 to 
predict the blood pressure at visits 4 and 5 and whether or not the 
woman had developed high blood pressure on either visit 4 or 5.   
 
Brief descriptive statistics: 
 
Variable   Mean/Percentage  SD 
Age     66.3    6.9 
BMI     27.3    4.9 
Weight     70.3 kg   13.4 kg 
On BP meds   79% 



Predictive model (for baseline and visits 1, 2 and 3): 
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How well do the predictions work? 
 
For predicting the actual systolic blood pressure: 
 
     Prediction Errors 
Method  Ave Ave abs RMSE 
Fixed effects only  3.4 13.8 18.1 
Mixed model (normal)   3.9 11.0 14.9 
Mixed model (exponential)  3.1 11.1 14.9 
 
For predicting high BP or not: 
 
Area under the ROC curve:  Fixed effects – 0.55, Normal – 0.80, 
Exponential – 0.80. 



Do they give the same predicted values?  No, but close: 
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Here is a plot of the difference between the predicted values: 
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8. How to fit non-normal random effects distributions 
 
Well known:  If a variable is skewed right then taking the log of 
that variable often makes its distribution closer to normal.  
(Distribution is approximately lognormal). 
 
Used in reverse:  If a variable is normal then exponentiating it 
creates a skewed-right, lognormal variable. 
 
Schematically: 
 
Normal = ln (Skewed) 
 
Exp(Normal) = Skewed 



Basic idea:  NLMIXED can only accommodate normally 
distributed random effects, but arbitrary nonlinear models.  So 
instead of directly including the random effect, include 
exp(random effect). 
 
By comparing inclusion of (random effect) versus exp(random 
effect) we can see if a lognormally distributed variate fits better. 



Illustration (repeated measures on patients with two predictors, x1 and x2) 
 
proc nlmixed data=work.temp; 
  parms b0=1 b1=0 b2=0 ls2u=-1 ls2e=-1; 
  nu=b0+b1*x1+b2*x2; 
  mu=nu+pat; 
  model y ~ normal(mu, exp(ls2e)); 
  random pat ~ normal(0, exp(ls2u)) subject=patntID; 
run; 
 

VERSUS 
 

proc nlmixed data=work.temp; 
  parms b0=1 b1=0 b2=0 ls2u=-1 ls2e=-1 

mupat=0; 
  nu=b0+b1*x1+b2*x2; 
  mu=nu+exp(mupat+pat); 
  model y ~ normal(mu, exp(ls2e)); 
  random pat ~ normal(0, exp(ls2u)) subject=patntID; 
run; 



How to compare models? 
 
Models are fit by maximizing the log of the likelihood.  But this 
doesn’t account for the fact that the lognormal model has an 
additional parameter and would be expected to fit better just 
because of that extra flexibility. 
 

Also, not the usual (nested) model comparison.   
 

A typical method of choosing between non-nested models is the 
Akaike Information Criterion (AIC). 
 
     AIC  = -2 × log lik + 2 × (no. of parameters) 
   = -2 × model fit + complexity penalty 
 
So smaller is better.   



Illustration:  The normal model has 5 parameters (intercept, two 
betas, two variances) for a penalty of 2 × 5 = 10. 
 
Lognormal model additionally has a mean parameter for 6 
parameters and a penalty of 12. 
 
Log likelihood of normal = -41.6 
Log likelihood of lognormal = -37.4 
 
AIC for normal   = -2 × -41.6 + 10 = 83.8 + 10 = 93.8 
AIC for lognormal  = -2 × -37.4 + 12 = 74.8 + 12 = 86.8 
 
So lognormal is preferred. 
 



Johnson family of distributions 
 
But what if the data are armed with a pointed stick?  That is, what 
if the random effects are not normally distributed but also not 
lognormally distributed? 
 
This trick can be extended using the “Johnson” family of 
transformations (NL Johnson, “Systems of frequency curves 
generated by methods of translation”  Biometrika, 36: 149-176, 
1949). 



Johnson family 
 

By considering three different transformations, distributions with 
any skewness or kurtosis can be modeled.  Let u represent a 
random effect. 
 

Normal (no transformation) 
   u 
 

Transformation 1 (lognormal) 
   exp(µ+u) 
 

Transformation 2 
   φsinh(µ+u) 
 

Transformation 3 
   φexp(µ + u)/[1+exp(µ + u)] 



Here is code for the sinh(.) one: 
 
proc nlmixed data=work.tmp maxiter=500 maxfunc=10000; 

parms b0=1.1 bi1=0 bi2=0 muu=-2 phi=1 lsig2u=-1  
  lsig2e=-1; 
nu=b0+bi1*infect1+bi2*infect2; 
title "Avidity sinh random effect, time 1"; 
mu=nu+phi*sinh(muu+u); 
model type14 ~ normal(mu, exp(lsig2e)); 
random u ~ normal(0, exp(lsig2u)) subject=matchid; 

run; 

 
Note:  Only one will fit the data best and rest will have trouble 
converging.  



 

9. Summary 
 

• Predicted values of random effects show modest sensitivity to 
the assumed distributional shape. 

• Distribution shape of BLUPs often not reflective of true 
random effects distribution.  

• The ranking of predicted values is little affected.  
• Fitting flexible distributional shapes is an easy way to check 

sensitivity of the results to the assumed shape.  
 
I can be contacted at:  chuck@biostat.ucsf.edu 
 
and Estie has put the slides on the seminar web site if you wish to 
download them.  


