MEDICATION ADHERENCE: TAILORING THE ANALYSIS TO THE DATA

Parya Saberi, Pharm.D.

June 3, 2010

University of California San Francisco

AIDS Research Institute

PROBLEMS WITH ADHERENCE

- Assessment → focus of many studies
- o Analysis → not discussed much
 - As a continuous variable, adherence data are highly left-skewed and have a pile of values at 100%

CURRENT METHOD OF ANALYZING ARV ADHERENCE

- Dichotomizing
 - May lead to loss of power
 - May lead to loss of valuable information
 - Usually determined post hoc
 - Requires choosing arbitrary & subjective cut-offs
 90%, 95%, or 100%
- Analyzing using logistic regression

OBJECTIVE

- Determine a complement to logistic regression to analyze medication adherence data, where adherence can be analyzed as a continuous variable.
- Demonstrate an example from actual ARV adherence data.
- Illustrate results of simulation models for a variety of scenarios.

SIMILARITY BETWEEN THE SHAPE OF ADHERENCE DATA & GAMMA DISTRIBUTION

• Underlying reverse gamma distribution w/ inflation at 100%

GENERALIZED LINEAR MODELS: GAMMA DISTRIBUTION

- Can be used when outcome is:
 - Continuous
 - Non-negative
 - Right-skewed
- Model assumption:
 - Standard deviation of outcome is proportional to mean

APPLYING GAMMA DISTRIBUTION TO ADHERENCE < 100%

- Gamma distribution can be used when outcome is:
 - √ Continuous
 - √ Non-negative
 - → Right-skewed: but adherence data are left-skewed
 - Can transform by subtracting adherence from 100%
 - (i.e. 100 percent adherence):
 - resulting in percent non-adherence

TRANSFORMING ADHERENCE DATA

• Underlying gamma distribution with inflation at 0%

http://upload.wikimedia.org/wikipedia/commons/1/1f/Inverse_gamma_pdf.png

EXAMPLE

- Performed secondary data analysis of baseline data of the **Healthy Living Project** (HLP)
 - Data on 2845 individuals on ARVs at baseline
 - Variables:
 - ARV adherence: self-reported ACTG 3-day adherence
 - \circ Age: $\le 34, 35-44, \ge 45$

STEP 1: LOGISTIC REGRESSION

• Can dichotomize *non-adherence* at a cutoff of 0%

STEP 2: GLM GAMMA DISTRIBUTION

• For all values > 0%, we can treat percent *non-adherence* as a continuous variable

INTERPRETATION

• Because of transformation of outcome, ratios and coefficients are in terms of increasing *lack* of adherence or non-adherence

10

EXAMPLE

• Association between age and ARV non-adherence

Logistic Regression

Age category	Frequency (%)	Percent with 0% Non-adherence	Odds Ratio (95% CI)	p-value
≤34	420 (14.8)	64.8	Ref	-
35-44	1462 (51.4)	62.4	1.11 (0.88, 1.39)	0.39
≥45	962 (33.8)	69.4	0.81 (0.63, 1.03)	0.09

Generalized Linear Model

Age category	Frequency (%)	Mean % Non-adherence	Coefficient (95% CI)	p-value
≤34	148 (14.9)	30.1	Ref	-
35-44	549 (55.4)	24.7	0.82 (0.70, 0.96)	0.02
≥45	294 (29.7)	25.0	0.83 (0.69, 0.99)	0.04

Interpretation of Logistic Regression

• Odds of *non-adherence* for individuals ≥ 45 years of age is 0.81 (95% CI = 0.63-1.03, p = 0.09) times higher than individuals ≤ 34 years of age.

INTERPRETATION OF GLM

- Among individuals with > 0% non-adherence:
 - those \geq 45 years of age have a 0.83 (95% CI = 0.69-0.99, p = 0.04) times higher risk of non-adherence than those \leq 34.
 - mean predicted *non-adherence* for individuals \leq 34, 35-44, and \geq 45 years of age is 30.1%, 24.7%, and 25.0%, respectively.

SIMULATION MODEL

- To determine type I error and power of use of GLM + logistic regression versus logistic regression alone, we simulated data and evaluated differences using:
 - Model 1 (sample size model): similar gammas and zero inflations as data in HLP but sample sizes of 200 to 2000
 - Model 2 (gamma distribution model): similar zero inflations as HLP, sample size of 2850, but changes in gamma distributions
 - Model 3 (zero inflation model): similar gamma distributions as HLP, sample size of 2850, but changes in zero inflations

SIMULATION MODEL

- Outcome: ARV non-adherence
- Predictor:
 - Hypothetical adherence predictor (categories 0-3)
 - Within boundaries of other historical predictors
 - Mid-range distribution for zero-inflation and gamma distribution of data
- Analysis:
 - Logistic regression alone (p < 0.05)
 - GLM gamma + logistic regression (p < 0.025 for each test)

MODEL 1:

SAMPLE SIZE MODEL

SIMULATED MODEL 1

Logistic Regression (n=2850)

Predictor	Frequency (%)	Percent with 0% Non-adherence	Odds Ratio (95% CI)	p-value
0	912 (32)	67.3	Ref	-
1	1311 (46)	65.8	1.07 (0.90, 1.28)	0.44
2	427 (15)	60.2	1.36 (1.07, 1.73)	0.01
3	200 (7)	58.5	1.46 (1.07, 2.00)	0.02

Generalized Linear Model (n=1000)

Predictor	Frequency	Mean %	Coefficient	p-value
	(%)	Non-adherence	(95% CI)	p-value
0	298 (29.8)	25.7	Ref	-
1	449 (44.9)	27.3	1.06 (0.93, 1.21)	0.37
2	170 (17.0)	31.1	1.21 (1.02, 1.43)	0.03
3	83 (8.3)	32.5	1.26 (1.05, 1.53)	0.02

MODEL 2:

GAMMA DISTRIBUTION MODEL

LOGISTIC REGRESSION

Logistic Regression (n=2850)

Predictor	Frequency	Percent with 0%	Odds Ratio	p-value
	(%)	Non-adherence	(95% CI)	p-value
0	912 (32.0)	67.3	Ref	-
1	1311 (46.0)	65.8	1.07 (0.90, 1.28)	0.44
2	427 (15.0)	60.2	1.36 (1.07, 1.73)	0.01
3	200 (7.0)	58.5	1.46 (1.07, 2.00)	0.02

CLOSE TOGETHER

Generalized Linear Model (n=1000)

Predictor	Frequency (%)	Mean % Non-adherence	Coefficient (95% CI)	p-value
0	298 (29.8)	25.7	Ref	-
1	449 (44.9)	24.0	0.93 (0.82, 1.07)	0.32
2	170 (17)	24.1	0.94 (0.78, 1.12)	0.48
3	83 (8.3)	26.5	1.03 (0.83, 1.28)	0.79

MID-RANGE

Generalized Linear Model (n=1000)

Predictor	Frequency (%)	Mean % Non-adherence	Coefficient (95% CI)	p-value
0	298 (29.8)	25.7	Ref	-
1	449 (44.9)	27.3	1.06 (0.93, 1.21)	0.37
2	170 (17.0)	31.1	1.21 (1.02, 1.43)	0.03
3	83 (8.3)	32.5	1.26 (1.05, 1.53)	0.02

SPREAD APART

Generalized Linear Model (n=1000)

Predictor	Frequency (%)	Mean % Non-adherence	Coefficient (95% CI)	p-value
0	298 (29.8)	25.7	Ref	/ - \
1	449 (44.9)	29.7	1.15 (1.01, 1.31)	0.03
2	170 (17.0)	31.3	1.22 (1.03, 1.44)	0.02
3	83 (8.3)	34.2	1.33 (1.10, 1.61)	0.003

MODEL 3:

ZERO INFLATION MODEL

GLM: GAMMA DISTRIBUTION

Generalized Linear Model (n=1000)

Predictor	Frequency	Mean %	Coefficient	p-value
	(%)	Non-adherence	(95% CI)	p-value
0	298 (29.8)	25.7	Ref	-
1	449 (44.9)	27.3	1.06 (0.93, 1.21)	0.37
2	170 (17.0)	31.1	1.21 (1.02, 1.43)	0.03
3	83 (8.3)	32.5	1.26 (1.05, 1.53)	0.02

CLOSE TOGETHER

Logistic Regression (n=2850)

Predictor	Frequency (%)	Percent with Non-adherer		p-value
0	912 (32.0)	67.3	Ref	-
1	1311 (46.0)	69.9	0.89 (0.74, 1.07)	0.20
2	427 (15.0)	63.7	1.17 (0.92, 1.49)	0.19
3	200 (7.0)	62.5	1.24 (0.90, 1.70)	0.19

MID-RANGE

Logistic Regression (n=2850)

Predictor	Frequency (%)	Percent with 0% Non-adherence	Odds Ratio (95% CI)	p-value
0	912 (32.0)	67.3	Ref	-
1	1311 (46.0)	65.8	1.07 (0.90, 1.28)	0.44
2	427 (15.0)	60.2	1.36 (1.07, 1.73)	0.01
3	200 (7.0)	58.5	1.46 (1.07, 2.00)	0.02

SPREAD APART

Logistic Regression

Predictor	Frequency (%)	Percent with Non-adhere	Odds Ratio (95% CI)	p-value
0	912 (32.0)	67.3	Ref	-
1	1311 (46.0)	61.3	1.30 (1.09, 1.55)	0.004
2	427 (15.0)	51.5	1.98 (1.56, 2.50)	<0.001
3	200 (7.0)	50.5	2.02 (1.48, 2.75)	<0.001

ADVANTAGES OF GLM GAMMA + LOGISTIC REGRESSION

- Uses actual values of all data
- Is statistically a powerful tool
- Has acceptable type I error
- GLM can predict mean non-adherence of individuals with > 0% non-adherence
- Shows where variability in data is coming from (i.e. within dichotomized outcome, within the degree of non-adherence, or both).

DISADVANTAGES OF GLM GAMMA + LOGISTIC REGRESSION

- Initially may be more complex and technical
 - Assistance of biostatistician is key (which is really an advantage)
- It is a 2-step process
 - No one answer to summarize all data
 - More lengthy interpretation
- Little gain with its use in scenarios with large zero inflation and little spread in gamma distribution

CONCLUSION

- As it is critical to assess medication adherence using different methods, it is also important to analyze these data by various approaches.
- GLM using a gamma distribution is a powerful tool that can be used in conjunction with logistic regression to get another perspective of the data.

FUTURE DIRECTIONS:

- Use of this 2-step analysis approach to analyze ARV adherence data assessed using various methods (e.g. pharmacy refill records, pill count, MEMs caps, etc)
- Use of other analysis methods: zinb, zip

SPECIAL THANKS TO ...

- Eric Vittinghoff, PhD
- Torsten Neilands, PhD
- Charles McCulloch, PhD
- Estie Hudes, PhD
- Mallory Johnson, PhD
- o Samantha Dilworth, MS

The project described was supported by Award F32MH086323 and U10MH057616 from the **National Institute of Mental Health**.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Mental Health or the National Institutes of Health.