APPLICATION OF GROWTH MIXTURE MODELS FOR EARLY DETECTION

Christy K. Boscardin, Ph.D.
CAPS Methods Core Seminar
October 30, 2009
Advantages of Growth Mixture

- Provide more flexibility of assumptions about the population
- Used to identify heterogeneous subgroups in the population
- Used to identify & cluster individuals with similar developmental profiles/trajectories
- Useful for determining the appropriate intervention based on the factors associated with each subgroup
Overview

- Reading Development
- Longitudinal Data Analysis
- Introduction to Growth Mixture Modeling
- Early Reading Assessment Study
Background on Reading

- Reading Disability accounts for 80% of Learning Disability
- Term Learning Disability Coined by Kirk & Bateman (1962)
 - Unexpected Difficulties in Language, Learning, Reading
- Until recently – IQ discrepancy method used for diagnosis
- Discrepancy between ability (as measured by IQ) and reading achievement (as measured by standardized state test)
Problems with IQ Discrepancy Method

- 2 measures involved: IQ and standardized achievement test
- Problems with IQ test:
 - IQ includes linguistic components
 - Validity of IQ tests have been questioned
- Students with reading disability diagnosed in 2nd grade
 - No standardized achievement scores available
 - Require oral assessment rather than traditional testing format
 - Unnecessarily delay identification
Background on Reading Cont.

- NICHD study: approximately 75% of children will continue to have reading difficulties in later grades diagnosed after 2nd grade
- Early intervention is key to successful remediation
- Studies with intervention starting in kindergarten shown success
- Intervention most effective prior to overt manifestation
Current Reading Development Movement

- Focus shifted to early identification of student at-risk
- Require examination of predictors & precursors
- Limited empirical studies on reading development over time
- **Hypothesis:** Reading development may include subtypes rather than one normative trajectory
- Longitudinal analysis helps identify best time to intervene
Research Questions

- Are there distinct subtypes of reading developmental trajectories?
- Are students at-risk for reading difficulties look qualitatively different compared to students with normal reading development?
- What are the factors related to being at-risk?
Growth Modeling

- Typical approach for looking at development over time: Conventional Growth Modeling
- Describes changes in pattern over time using repeated measures
- Typical questions:
 - Are there individual differences in reading development over time?
 - Do boys and girls develop differently?
Growth Modeling (Latent Variable Framework)

With individual repeated measures, you can estimate underlying developmental trajectory:

\[Y_{ijt} = \eta_{ij1} + (t - T) \eta_{ij2} + \varepsilon_{ijt} ; t = 1, 2, ..., T. \]

Where for example

\[Y_{ijt} = \text{jth reading skill for ith individual at time t} \]
\[\eta_{ij1} = \text{initial status of reading ability} \]
\[\eta_{ij2} = \text{rate of improvement or change in reading ability} \]
\[\varepsilon_{ijt} = \text{error associated with the model} \]

Individual growth parameters are assumed to come from a single population: one normative slope & one normative intercept
Growth Mixture Modeling

- Technical advantages over conventional growth modeling
- Allow more flexibility in model specifications
- Allows for heterogeneity of subgroups – more than one population for individual specific parameters
- Advantages
 - More precise estimate of growth trajectory
 - Identify variations in developmental profiles
 - Vary the effect of covariates (factors) depending on the developmental profile
- Reading development suggest subgroups
 - Student with no response to instruction may be etiologically different from students who do respond to instruction
Growth Mixture Modeling

- Here’s the difference:
- Allowing for heterogeneity of subgroups with latent categorical variable
- Individuals are allowed to be in one of K latent classes (characteristically distinct developmental profiles)
- Covariates are used to both estimate growth but also to help predict class membership
Growth Mixture Modeling

\[Y_{ik} = \nu_k + \Lambda_k \eta_{ik} + K_k x_{ik} + \varepsilon_{ik}, \]
\[\eta_{ik} = \alpha_k + B_k \eta_{ik} + \Gamma_k x_{ik} + \zeta_{ik}, \]

Where

- \(Y_{ik} \) represents the repeated measures over fixed time points.
- \(\eta_{ik} \) random effects
- \(\Lambda_k \) represent the shape of the growth curves.
- \(K_k \) represents the effects of time-varying covariates,
- \(\Gamma_k \) represents the effects of time-invariant covariates.
- \(\alpha_k \) represents the intercepts for \(\eta \) for latent class \(k \).

The residual vectors, \(\varepsilon_{ik} \) and \(\zeta_{ik} \), are assumed to have covariance matrices \(\Theta_k \) and \(\Psi_k \), respectively.
Class Membership

The multinomial logistic regression for predicting class membership with a covariate:

\[
P(c_{ik} = 1|x_i) = \frac{\exp(\beta_{0k} + \beta_{1k}x_i)}{\sum_{c=1}^{K} \exp(\beta_{0c} + \beta_{1c}x_i)}
\]

Estimated posterior probabilities for each individual’s class membership are derived as follows:

\[
p_{ik} = P(c_{ik} = 1| y_i, x_i) \propto P(c_{ik} = 1| x_i) f(Y_{ik} | x_i)
\]

latent class membership indicators, \(c_{ik}\), to be 1 if individual \(i\) belongs to class \(k\), and 0 otherwise
Technical Details: Model Selection

- Identifying Number of Classes: Model Selection
 - Bayesian Information Criterion (BIC): non-nested models – smaller value
 - Entropy: precision in estimated posterior probability

- Comparison of individual estimated mean trajectories and observed mean trajectories
Early Assessment of Reading Skills (EARS) DATA

- **Purpose:**
 - Identify Students Most At-Risk for Reading Difficulties
 - Factors related to at-risk for reading difficulties
 - Earlier identification using precursor measures instead of waiting until 2nd grade

- **Sample:**
 - Subset of 411 from 945 with complete data in kindergarten
 - No significant differences in measures between the subset and total population
 - 50\% boys
 - 55\% White, 17\% African American, 16\% Hispanic, 11\% Asian, and 1\% other
 - White & Asian (Non-Minority) vs. African American, Hispanic, & Other (Minority)
Kindergarten: Phonological Awareness

- Deficits in Phonological awareness related to reading difficulties later
- Ability to manipulate phonemes
 - cake & camp, pan & can, /s/pill & pill
- At entry to formal schooling, know 6,000 words & basic phonological awareness
- **Signs of trouble in kindergarten**: difficulty in learning to name letters and attach phonemes to letters.
- **Instrument**: 7 subtests including: a) phoneme segmentation, b) phoneme elision, c) sound categorization, d) first sound comparison, e) blending onset and rime, f) blending phonemes into words, and g) blending phonemes into non-words.
- Internal consistency estimates for the subtests ranged from 0.85 to 0.95
- Score based on IRT estimate
- Measured 4 times during the year: Oct, Dec, Feb, April
First & Second Grade: Word Recognition

- Central to reading acquisition
- Fluency and efficiency of word recognition highly correlated with reading skills in later grades
- **Signs of trouble in 1st grade:** can’t recognize single words out of sentence context
- Instrument: 50 isolated words (index cards) - included 36 single-syllable, 11 two-syllable, and 3 three-syllable real words.
 - 16 words in common across the two grades
 - Internal consistency estimates exceeded 0.90
 - Score based on IRT estimate
 - Measured 4 times in each grade (total of 8 times)
Covariate: Letter Identification/Rapid Naming

- Accuracy and Fluency of Letter Identification shown to be highly correlated with reading
- Not considered a precursor skill
- Instrument: The correct number of letter naming within 60 seconds was recorded.
 - Measured at the end of kindergarten
Kindergarten (Phonological Awareness) P1-P4

First and Second Grade (Word Recognition) W1-W8

Growth1 Int1 Growth2 Int2

C 1 C 2

Rapid Naming
<table>
<thead>
<tr>
<th>Kindergarten</th>
<th>WR1</th>
<th>WR2</th>
<th>WR3</th>
<th>WR4</th>
<th>WR5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA1</td>
<td>Class 1 45 (11%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA2</td>
<td></td>
<td>Class 2 63 (15%)</td>
<td>Class 3 77 (19%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA3</td>
<td></td>
<td>Class 4 8 (2%)</td>
<td>Class 5 56 (14%)</td>
<td>Class 6 36 (9%)</td>
<td></td>
</tr>
<tr>
<td>PA4</td>
<td></td>
<td></td>
<td>Class 7 20 (5%)</td>
<td>Class 8 8 (14%)</td>
<td>Class 9 30 (7%)</td>
</tr>
<tr>
<td>PA5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Class 10 18 (4%)</td>
</tr>
</tbody>
</table>
Kindergarten (Phonological Awareness) P1-P4

First and Second Grade (Word Recognition) W1-W8

Growth1 Int1 Growth2 Int2

C 1 C 2

Rapid Naming

Reading Achievement 2nd Grade
Summary of Findings

- 5 Distinct Developmental Profiles in Each Grade
- 10 Distinct Developmental Profiles (including transitional groups) across 3 years
- Class 1 students: no Phonological Awareness development – no Word Recognition Development
- Rapid naming is strong predictor of class membership
- As early as kindergarten we can start to identify students who are potentially at-risk for reading difficulties
- Significantly higher proportion of minority students in class 1 compared to other classes.
Applications of Growth Mixture Modeling

 - Investigated whether a single growth curve adequately characterizes the variability in individual drinking trajectories. Identified 5 trajectories.

 - There is an ongoing research effort to test if depression is a homogeneous clinical syndrome and to identify valid and useful subtypes based on the number and nature of depressive symptoms.

Contact Info:

Christy K. Boscardin, PhD
christy.boscardin@ucsf.edu