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Motivation

The observed data are n i.i.d. copies of O = (X,Y).
▶ X = D covariates
▶ Y = J standardized outcomes

Together Y represents an unmeasured outcome of interest.
▶ Inflammation in CVD
▶ Immune response in HIV
▶ Subject area tests in cognitive development

Researchers are interested in prediction of unmeasured
outcome using X.



Motivation

Can we use neonatal information to predict neurocognitive
outcomes later in life?

▶ Early identification of at-risk children.

What covariates are important for prediction?
▶ Informs what information to collect to screen children.



Motivation: PROBIT

The Promotion of Breastfeeding Intervention Trial enrolled
pregnant mothers in 1996–97 (Kramer et al, 2001).

Group name Variables
Breastfeeding breastfeeding encouraged
Socioeconomic household animals
Parental age, height, weight, education, siblings

employment status
Birth gestational age, Apgar score
Growth WAZ, HAZ, HCAZ (0,1,2,3,6,9,12 months)
Other mother smoked during pregnancy, mother

drank during pregnancy
WASI score Matrix, Block, Vocabulary, Similarities
(age 6)



Motivation: CLHNS

The Cebu Longitudinal Health and Nutrition Survey enrolled
pregnant mothers in 1983–84 (Feranil et al, 2008).

Group name Variables
Health care health care access, preventive health care
Household child:adult ratio, child dependency ratio,

crowding index, urban score
Socioeconomic total income, SES
Water/sanitation sanitation, access to clean water
Parental mother age, father age, mother height, mother

education (years), father education (years),
marital status, mother age first child, parity

Growth WAZ, HAZ (0,6,12,18,24 months)
Other mother smoked during pregnancy, child’s sex,

gestational age at birth
Achievement tests Math, Cebuano, English
(age 11)



Motivation

How to combine test scores to measure “neurocognition”?

Give equal weight to all scores?
▶ What if some scores are noisy or not related to
covariates?

PCA or factor analysis to combine scores?
▶ Not related to scientific goal.

Use the combination that is predicted most accurately.



Motivation

Consider this simple associative directed acyclic graph.
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Motivation

Let Yω =
J∑

j=1

ωjYj , with ωj ≥ 0 for all j and
J∑

j=1

ωj = 1.
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Motivation

Predicting only Y1 ignores X3’s association with Y.
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Motivation

Predicting only Y2 ignores X1’s association with Y.
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Motivation

Predicting Y3 adds noise, wastes type-1 error.
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Motivation

Predicting Yω uses all of X.

X1

X2

X3

Y1

Y2

Y3

Yω

ω1

ω2

ω3



Motivation

We could be clever in choosing weights if we knew the DAG.
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Motivation

Outcome Y3 gets no weight.
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Motivation

Outcomes Y1 and Y2 get weight based on accuracy of
predictions.

X1

X2

X3

Y1

Y2

Y3

Yω

ω1

ω2



Outline

Motivation

Defining target parameters
▶ Measuring accuracy of predictions
▶ Optimal predictor and weights

Estimation
▶ Super learning
▶ Estimating weights

Evaluating predictions
▶ Estimation and inference
▶ Variable importance

Simulation

Data Analysis

Conclusions and future directions



Measuring accuracy

Suppose we are given ω and ψω : X → R to predict Yω.

A measure of accuracy of ψω is MSE:

E0(ψω) = E0

[
{Yω − ψω(X)}2

]
.

However, MSE depends on scale and variability of Yω.
▶ Hard to compare across studies, outcomes.



Measuring accuracy

To obtain a scale-free measure, we use a nonparametric
version of R2.

Let µ0,ω = E0(Yω) be predictions made ignoring X.

R2
0,ω(ψω) =

MSE of µ0,ω︷ ︸︸ ︷

E0

[
{Yω − µ0,ω}2

]
−

MSE of ψω︷ ︸︸ ︷

E0

[
{Yω − ψω(X)}2

]
E0

[
{Yω − µ0,ω}2

]

︸ ︷︷ ︸
MSE of µ0,ω

.
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Predicting combined outcome

The criteria R2
0,ω provides a way to compare prediction

functions for Yω.
▶ Large R2

0,ω indicates accurate predictions.
▶ R2

0,ω = 1 indicates perfect predictions.
▶ R2

0,ω < 0means predictions worse than µ0,ω!

The maximizer over all X → R is

ψ0,ω(X) = E0(Yω | X) .

This fact plays a key role in how we will construct a
prediction function.



Optimal weights

For any ω, the function ψ0,ω gives the most accurate
predictions of Yω.

We also want weights that lead to most accurate predictions
of combined outcome.

Formally, we define

ω0 = argmaxωR
2
0,ω(ψ0,ω) .

The statistical goal is to estimate ψ0,ω0 and ω0.



Caveats

The sense in which this combination is optimal is strictly
related to prediction.

▶ Not how well combined outcome measures “latent”
outcome.

The optimal weights could give zero weight to some
outcomes.

▶ These outcomes may still be important!

The procedure is best viewed as an exploratory analysis.
▶ However, it can be fully pre-specified!
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Estimation

The statistical goal is to estimate ψ0,ω0 and ω0.

At first glance, it looks like a difficult optimization problem,

ψ0,ω0 = argmaxψR
2
0,ω0

(ψ)

ω0 = argmaxωR
2
0,ω(ψ0,ω)

The problem is made easier by recognizing

ψ0,ω(X) = E0(Yω | X) = E0

( J∑
j=1

ωjYj

∣∣∣∣ X) =

J∑
j=1

ωjE0(Yj | X) .



Estimation

For any ω, ψ0,ω is weighted sum of conditional means.

This allows the optimization to be split up:
1. Estimate E0(Yj | X) for j = 1, . . . , J.

2. Combine estimates
∑J

j=1 ωjÊ(Yj | X).
3. Optimize over weights using estimated prediction

function.

However, we must take care to avoid overfitting!
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Predicting outcomes

How should we estimate E0(Yj | X) for a given j?

▶ Linear regression, with interactions, and nonlinear
terms, or splines (with different degrees?)

▶ Penalized linear regression, with different penalties?
▶ Random forests, with different tuning parameters?
▶ Gradient boosting? Support vector machines? Deep
neural networks?

▶ Highly adaptive lasso?
▶ Variable selection?
▶ Ad infinitum...

The best algorithm for estimating depends on the
(unknown) truth!

▶ Might be different for different outcomes.
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Predicting outcomes

We use ψ : S → Ψ to denote an algorithm.
▶ S is all subsets of {1, . . . ,n}.
▶ Ψ is set of X → R.

Given a data set, an algorithm:
1. takes as input a subset of observations;
2. uses observations to create a prediction function;
3. returns prediction function.

We refer to this process as training an algorithm.



Predicting each outcome

Say we haveM algorithms that could be used to estimate
E0(Yj | X).

How can we evaluate these algorithms?

▶ Train algorithms on full data, see which has largest
empirical R2.

▶ Overfit!
▶ Train algorithms on full data, collect more data to
evaluate R2.

▶ Expensive!
▶ Cross validation!
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Cross validation

Consider randomly splitting the data into K different pieces.

S1
S2
S3
S4
S5



Cross validation

Define first training, T1, and validation, V1, sample.

V1

T1

T1

T1

T1



Cross validation

TrainM algorithms using T1.
▶ ψj,m(T1), form = 1, . . . ,M

Withhold validation sample V1 from training process.
▶ As though we did another experiment of size |V1|!

Use validation sample to estimate MSE of each algorithm

Êj,m,1(ψj,m) =
1

|V1|
∑
i∈V1

{Yj,i − ψj,m(T1)(Xi)}2 .



Cross validation

Define second training, T2, and validation, V2, sample.

T2

V2

T2

T2

T2



Cross validation

TrainM algorithms using T2.
▶ ψj,m(T2), form = 1, . . . ,M

Withhold validation sample V2 from training process.
▶ As though we did another experiment of size |V2|!

Use validation sample to estimate MSE of each algorithm

Êj,m,2(ψj,m) =
1

|V2|
∑
i∈V2

{Yj,i − ψj,m(T2)(Xi)}2 .



Cross validation

Continue until each split has been validation once.
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Cross validation

Continue until each split has been validation once.

T4

T4

T4

V4

T4



Cross validation

Continue until each split has been validation once.

T5

T5

T5

T5

V5



Cross-validation selector

The cross-validated MSE of algorithm m is

Êj,m(ψj,m) =
1

K

K∑
k=1

Êj,m,k(ψj,m) .

We call the algorithm m∗ with the lowest MSE the
cross-validation selector.

We might use ψj,m∗(Fn) as estimate of E0(Yj | X), where
Fn = {1, . . . ,n}.



Ensemble estimator

What if ψj,1 and ψj,2 capture different features?

Using ψj,SL = 0.5ψj,1 + 0.5ψj,2 might be better than ψj,1 and
ψj,2 alone.

More generally, consider an ensemble prediction function

ψj,SL =

M∑
m=1

αj,mψj,m , αj,m ≥ 0 for all m , and
M∑

m=1

αj,m = 1 .

Easy to find αj that minimizes cross-validated MSE.



Super learner

Stacked regression originally proposed in Breiman, 1996.

Referred to as a super learner due to oracle inequality
results (van der Laan and Dudoit, 2003).

▶ MSE of the super learner is asymptotically equivalent to
the oracle estimator.

▶ Even when one considers many estimators.
▶ Often seen to have good finite-sample performance
(van der Laan et al, 2007).

Proving new oracle results is an open area of research!
▶ Recent work on Big Data oracle inequalities.
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Statistical goal

Difficult optimization problem,

ψ0,ω0 = argmaxψR
2
0,ω0

(ψ)

ω0 = argmaxωR
2
0,ω(ψ0,ω) ,

made easier because

ψ0,ω = E0

( J∑
j=1

ωjYj

∣∣∣∣ X) =

J∑
j=1

ωjE0(Yj | X) .

For any ω, combine super learners to estimate ψ0,ω,

ψn,ω =

J∑
j=1

ωjψj,SL(Fn) .



Estimating optimal weights

How do we estimate ω0?

▶ Maximize empirical R2 over weights.

ωn = argmaxω

(
1−

1
n
∑n

i=1{Yω,i − ψn,ω(Xi)}2
1
n
∑n

i=1{Yω,i − Ȳω}2

)

▶ overfit!
▶ Collect more data, maximize R2 on new data.

▶ expensive!
▶ Cross validation!
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Nested cross validation

Define first training, T1, and validation, V1, sample.

V1

T1

T1

T1

T1



Cross validation

Train J super learners using T1.
▶ ψj,SL(T1), for j = 1, . . . , J

For any ω, we can construct combined super learner

ψω,SL(T1) =

J∑
j=1

ωjψj,SL(T1) .

Withhold validation sample V1 from super learner fitting.
▶ As though we did another experiment of size |V1|!

For any ω, use validation sample to estimate MSE

Êω,1(ψω,SL) =
1

|V1|
∑
i∈V1

{Yω,i − ψω,SL(T1)(Xi)}2 .



Nested cross validation

Define second training, T2, and validation, V2, sample.

T2

V2

T2

T2

T2



Nested cross validation

Train J super learners using T2.
▶ ψj,SL(T2), for j = 1, . . . , J

For any ω, we can construct combined super learner

ψω,SL(T2) =

J∑
j=1

ωjψj,SL(T2) .

Withhold validation sample V2 from super learner fitting.
▶ As though we did another experiment of size |V2|!

For any ω, use validation sample to estimate MSE

Êω,2(ψω,SL) =
1

|V2|
∑
i∈V2

{Yω,i − ψω,SL(T2)(Xi)}2 .



Nested cross validation

Continue until each split has been used once.

T3

T3

V3

T3

T3



Nested cross validation

Continue until each split has been used once.

T4

T4

T4

V4

T4



Nested cross validation

Continue until each split has been used once.

T5

T5

T5

T5

V5



Estimating weights

For any ω, we have cross-validated estimate of R2,

R2
n,ω(ψω,SL) = 1−

1
K
∑K

k=1 Êω,k(ψω,SL)
1
n
∑n

i=1{Yω,i − Ȳω}2
.

Estimate of optimal weights is

ωn = argmaxωR
2
n,ω(ψω,SL) .
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Estimating predictive performance

How accurate is ψn,ωn in predicting Yωn?
▶ Report R2

n,ωn(ψωn,SL), call it a day.
▶ overfit!

▶ Collect more data to evaluate predictions.
▶ expensive!

▶ More cross validation!!!



Doubly nested cross validation

Pictures omitted for the sanity of audience.



Estimating predictive performance

Cross-validate the entire procedure to estimate
performance.

▶ Compute ωn and ψn,ωn in training sample
▶ Estimate R2 in validation sample
▶ Average over splits

Formally, we define ω : S → Ω and ψω,SL : S → Ψ.

The cross-validated R2 estimate is

R2
n(ωn, ψn,ωn) = 1−

∑K
k=1

1
|Vk|

∑
i∈Vk{Yω(Tk),i − ψω(Tk),SL(Xi)}

2∑K
k=1

1
|Vk|

∑
i∈Vk{Yω(Tk),i − Ȳω(Tk)}2

.



Inference for predictive performance

In spite of the highly adaptive estimation procedure,

n1/2
{
R2
n(ωn, ψn,ωn)− R2

0(ωn, ψn,ωn)
}
→ Normal(0, σ2) .

A sufficient condition is that ω0 is unique.
▶ Possible to relax this condition (Luedtke et al, 2016).

Variance derived via delta method for influence functions.
▶ Consistently estimated with closed-form estimator.

Variance estimates used to construct closed-form
confidence intervals and hypotheses tests.

▶ Machine learning with inference!



Variable importance

Define R2
0(ω

d
n, ψ

d
n,ωn) as the true R

2 of the estimated super
learner that leaves out Xd, d = 1, . . . ,D.

The “importance” of Xd could be quantified by

∆d
0n = R2

0(ωn, ψn,ωn)− R2
0(ω

d
n, ψ

d
n,ωn) .

How much did Xd improve predictions of combined
outcome?

▶ Similar to random forest variable importance measures



Variable importance

Variable importance can be estimated as

∆d
n = R2

n(ωn, ψn,ωn)− R2
n(ω

d
n, ψ

d
n,ωn) .

We can still establish

n1/2(∆d
n −∆d

0n) → Normal(0, σ2d) .

Variance can again be derived using delta method for
influence functions.

Did Xd significantly improve predictions of combined
outcome?
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Simulation

Covariates:
X1, . . . ,X6 ∼ Uniform(0, 4), X7, . . . ,X9 ∼ Bernoulli(0.5)

Outcomes:

Y1 = X1 + 2X2 + 4X3 + X7 + 2X8 + 4X9 + 2X4 + ϵ1 ,

Y2 = X1 + 2X2 + 4X3 + X7 + 2X8 + 4X9 + 2X5 + ϵ2 , and
Y3 = X1 + 2X2 + 4X3 + X7 + 2X8 + 4X9 + 2X6 + ϵ3 ,

with ϵj ∼ Normal(0, 52), j = 1, 2, 3.

True parameters:
ω0 = (13 ,

1
3 ,

1
3), R

2
0,ω0

= 0.80, ∆2
0 = 0.12.

Super learner:
intercept only, main terms, and stepwise linear model.



Simulation

Bias and coverage for R2
n,ωn (1000 replications).

●

●
● ●

−
2.

0
−

1.
0

0.
0

1.
0

n

B
ia

s 
(%

 o
f t

ru
th

)

100 500 1,000 5,000

●

●

●
●

88
92

96
10

0
n

C
ov

er
ag

e 
(M

C
 C

I)
100 500 1,000 5,000



Simulation

Bias and coverage for ∆2
n (1000 replications).
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Data analysis

Can we use neonatal information to predict neurocognitive
outcomes later in life?

▶ Early identification of at-risk children.

What covariates are important for making predictions?
▶ Informs what information to collect to screen children.



Motivation: PROBIT

The Promotion of Breastfeeding Intervention Trial enrolled
pregnant mothers in 1996–97.

Group name Variables
Breastfeeding breastfeeding encouraged
Socioeconomic household animals
Parental age, height, weight, education, siblings

employment status
Birth gestational age, Apgar score
Growth WAZ, HAZ, HCAZ (0,1,2,3,6,9,12 months)
Other mother smoked during pregnancy, mother

drank during pregnancy
WASI score Matrix, Block, Vocabulary, Similarities
(age 6)



Future directions

Effect estimation for discovery in high dimensions.
▶ Maximize effect instead of R2?
▶ Cross-validated TMLE (Zheng and van der Laan, 2010)

The method could be extended to binary outcomes, other
performance metrics, and dependent data.

Nonlinear combinations of outcomes are also of interest.
▶ Alternating conditional expectations (Breiman and
Friedman, 1985)



Software

R packages:

r2weight
▶ Available on GitHub:
https://github.com/benkeser/r2weight

SuperLearner (Polley et al, 2016)
▶ Demonstration – http://benkeser.github.io/sllecture/
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Oracle Inequality

Let L : Ψ×O → R be a loss function for ψ0 in the sense that

ψ0 = argminψ∈ΨE0{L(ψ)(O)} .

Define d0(ψ,ψ0) := E0

{
L(ψ)(O)− L(ψ0)(O)

}
and let p be the

proportion of observations in the validation sample.
Assume
1. ψn,m ∈ Ψ with probability tending to one for
m = 1, . . . ,M.

2. For some C0 <∞, supψ∈Ψd0(ψ,ψ0) < C0 almost surely.

3. For some C1 <∞, E0

{
L(ψ)(O)− L(ψ0)(O)− d0(ψ,ψ0)

}2 ≤
C1d0(ψ,ψ0) for all ψ ∈ Ψ.

For every λ > 0 and C(λ) := 2
3(1 + λ)2(C0 + C1),

EBn
{
d0(ψn,SL, ψ0)

}
≤ (1 + 2λ)EBn

{
d0(ψn,OR, ψ0)

}
+ 2C(λ)

(
1 + logK(n)

np

)



Asymptotics

The cross-validated R2 estimate is

R2
n(ωn, ψn,ωn) = 1−

∑K
k=1

1
|Vk|

∑
i∈Vk{Yω(Tk),i − ψω(Tk),SL(Xi)}

2∑K
k=1

1
|Vk|

∑
i∈Vk{Yω(Tk),i − Ȳω(Tk)}2

= 1− θ1,n
θ2,n

For k = 1, . . . ,K, define

D0n,k(ψω)(O)

:= {Yω(Tk) − ψω(Tk)(Tk)(X)}
2 − E0

[
{Yω(Tk),i − ψω(Tk),SL(Xi)}2

]
,

D0n,k(Ȳω)(O)

:= {Yω(Tk) − Ȳω(Tk)}
2 − E0

[
{Yω(Tk),i − Ȳω(Tk)(Xi)}2

]
.



Asymptotics

n1/2(θ1,n − θ1,0) → Normal(0, σ21), with

σ21 =
1

K

K∑
k=1

E0{D0n,k(ψω0)(O)2} .

n1/2(θ2,n − θ2,0) → Normal(0, σ22), with

σ22 =
1

K

K∑
k=1

E0{D0n,k(Ȳω0)(O)2} .

Let D0n,k(ψω, Ȳω) =
(
D0n,k(ψω),D0n,k(Ȳω)

)T, g(θ) = log(θ1/θ2),
and ▽g(θ) = (1/θ1,−1/θ2)

T.



Asymptotics

We have n1/2{g(θn)− g(θ0)} → Normal(0, σ23), where σ
2
3 is

▽g(θ0)T
1

K

K∑
k=1

E0{D0n,k(ψω0 , Ȳω0)(O)D0n,k(ψω0 , Ȳω0)(O)T}▽g(θ0) .



Canonical correlation

Let Yα =
∑J

j=1 αjYj and Xβ =
∑D

d=1 βdXd.

The first-order canonical variate of X and Y is found by
maximizing

E0{(Yα − µ0,α)(Xβ − µ0,β)}
E0{(Yα − µ0,α)2}E0{(Xβ − µ0,β)2}

over α and β under constraint that variances equal one.

The canonical correlation is the correlation between Xβ,0
and Yα0 .



Canonical correlation

If ψ0,j = Xβ for all j = 1, . . . , J, the optimal R2 equals the
squared first-order canonical correlation.

To illustrate difference, consider
▶ Xd ∼ Normal(0, 1), d = 1, 2

▶ Yj = X2
j for j = 1, 2

Canonical correlation measures linear association between
X and Y.

▶ Canonical correlation equals zero.

Optimal R2 measures how well we predict Y using X.
▶ Optimal R2 equals one.


