Optimally Combining Outcomes to Improve Prediction

David Benkeser On behalf of the HBGD community & HBGDki benkeser@berkeley.edu

Acknowledgments

Collaborators:

Mark van der Laan, Alan Hubbard, Ben Arnold, Jack Colford, Andrew Mertens, Oleg Sofyrgin, Jonathan French, Aryeh Stein, Shasha Jumbe

Funding:

Bill and Melinda Gates Foundation OPP1147962

Outline

Motivation

Defining target parameters

- Measuring accuracy of predictions
- Optimal predictor and weights

Estimation

- Super learning
- ► Estimating weights

Evaluating predictions

- ► Estimation and inference
- ► Variable importance

Simulation

Data Analysis

Conclusions and future directions

Outline

Motivation

Defining target parameters

- Measuring accuracy of predictions
- ► Optimal predictor and weights

Estimation

- Super learning
- ► Estimating weights

Evaluating predictions

- ► Estimation and inference
- ► Variable importance

Simulation

Data Analysis

Conclusions and future directions

The observed data are n i.i.d. copies of O = (X, Y).

- ► X = D covariates
- ► Y = J standardized outcomes

Together Y represents an unmeasured outcome of interest.

- ► Inflammation in CVD
- ► Immune response in HIV
- ► Subject area tests in cognitive development

Researchers are interested in prediction of unmeasured outcome using X.

Can we use neonatal information to predict neurocognitive outcomes later in life?

► Early identification of at-risk children.

What covariates are important for prediction?

► Informs what information to collect to screen children.

Motivation: PROBIT

The Promotion of Breastfeeding Intervention Trial enrolled pregnant mothers in 1996–97 (Kramer et al, 2001).

Variables
breastfeeding encouraged
household animals
age, height, weight, education, siblings
employment status
gestational age, Apgar score
WAZ, HAZ, HCAZ (0,1,2,3,6,9,12 months)
mother smoked during pregnancy, mother
drank during pregnancy
Matrix, Block, Vocabulary, Similarities
-

Motivation: CLHNS

The Cebu Longitudinal Health and Nutrition Survey enrolled pregnant mothers in 1983–84 (Feranil et al, 2008).

Group name	Variables
Health care	health care access, preventive health care
Household	child:adult ratio, child dependency ratio,
	crowding index, urban score
Socioeconomic	total income, SES
Water/sanitation	sanitation, access to clean water
Parental	mother age, father age, mother height, mother
	education (years), father education (years),
	marital status, mother age first child, parity
Growth	WAZ, HAZ (0,6,12,18,24 months)
Other	mother smoked during pregnancy, child's sex,
	gestational age at birth
Achievement tests	Math, Cebuano, English
(age 11)	-

How to combine test scores to measure "neurocognition"?

Give equal weight to all scores?

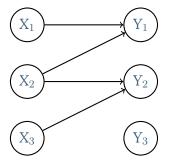
What if some scores are noisy or not related to covariates?

PCA or factor analysis to combine scores?

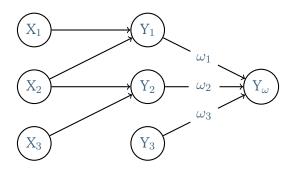
► Not related to scientific goal.

Use the combination that is predicted most accurately.

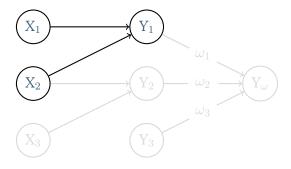
Consider this simple associative directed acyclic graph.



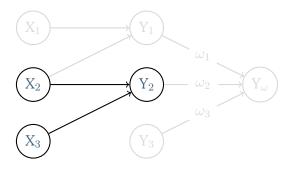
Let $Y_{\omega} = \sum\limits_{j=1}^{J} \omega_j Y_j$, with $\omega_j \geq 0$ for all j and $\sum\limits_{j=1}^{J} \omega_j = 1$.



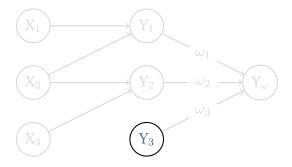
Predicting only Y_1 ignores X_3 's association with Y.



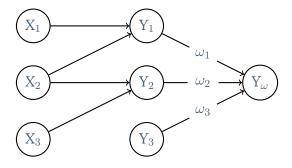
Predicting only Y_2 ignores X_1 's association with Y.



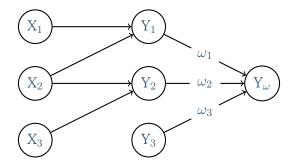
Predicting Y_3 adds noise, wastes type-1 error.



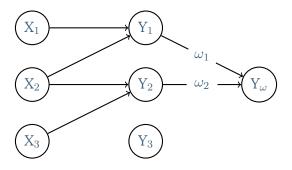
Predicting Y_{ω} uses all of X.



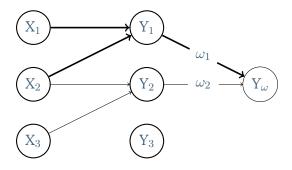
We could be clever in choosing weights if we knew the DAG.



Outcome Y₃ gets no weight.



Outcomes Y_1 and Y_2 get weight based on accuracy of predictions.



Outline

Motivation

Defining target parameters

- Measuring accuracy of predictions
- ► Optimal predictor and weights

Estimation

- Super learning
- ► Estimating weights

Evaluating predictions

- ► Estimation and inference
- ► Variable importance

Simulation

Data Analysis

Conclusions and future directions

Suppose we are given ω and $\psi_{\omega}: \mathcal{X} \to \mathbb{R}$ to predict Y_{ω} .

A measure of accuracy of ψ_{ω} is MSE:

$$\mathcal{E}_0(\psi_\omega) = E_0 \left[\{ Y_\omega - \psi_\omega(X) \}^2 \right] \; . \label{eq:epsilon}$$

However, MSE depends on scale and variability of Y_{ω} .

► Hard to compare across studies, outcomes.

To obtain a scale-free measure, we use a nonparametric version of \mathbb{R}^2 .

$$R_{0,\omega}^{2}(\psi_{\omega}) = \frac{E_{0} \left[\{ Y_{\omega} - \mu_{0,\omega} \}^{2} \right] - E_{0} \left[\{ Y_{\omega} - \psi_{\omega}(X) \}^{2} \right]}{E_{0} \left[\{ Y_{\omega} - \mu_{0,\omega} \}^{2} \right]}.$$

To obtain a scale-free measure, we use a nonparametric version of \mathbb{R}^2 .

$$R_{0,\omega}^2(\psi_\omega) = \frac{\overbrace{E_0\left[\left\{Y_\omega - \mu_{0,\omega}\right\}^2\right]}^{\text{MSE of } \mu_{0,\omega}} - E_0\left[\left\{Y_\omega - \psi_\omega(X)\right\}^2\right]}_{E_0\left[\left\{Y_\omega - \mu_{0,\omega}\right\}^2\right]}.$$

To obtain a scale-free measure, we use a nonparametric version of \mathbb{R}^2 .

$$R_{0,\omega}^2(\psi_\omega) = \frac{\overbrace{E_0\left[\{Y_\omega - \mu_{0,\omega}\}^2\right] - \underbrace{E_0\left[\{Y_\omega - \psi_\omega(X)\}^2\right]}^{\text{MSE of }\mu_{\omega}}} \underbrace{E_0\left[\{Y_\omega - \mu_{0,\omega}\}^2\right]}_{E_0\left[\{Y_\omega - \mu_{0,\omega}\}^2\right]}.$$

To obtain a scale-free measure, we use a nonparametric version of \mathbb{R}^2 .

$$R_{0,\omega}^2(\psi_\omega) = \underbrace{\frac{E_0\left[\{Y_\omega - \mu_{0,\omega}\}^2\right] - E_0\left[\{Y_\omega - \psi_\omega(X)\}^2\right]}_{\text{MSE of }\mu_{0,\omega}} \cdot \underbrace{\frac{E_0\left[\{Y_\omega - \mu_{0,\omega}\}^2\right]}_{\text{MSE of }\mu_{0,\omega}}}.$$

Predicting combined outcome

The criteria $R_{0,\omega}^2$ provides a way to compare prediction functions for Y_{ω} .

- ► Large $R_{0,\omega}^2$ indicates accurate predictions.
- ► $R_{0,\omega}^2 = 1$ indicates perfect predictions.
- ► $R_{0,\omega}^2 < 0$ means predictions worse than $\mu_{0,\omega}$!

The maximizer over all $\mathcal{X} \to \mathbb{R}$ is

$$\psi_{0,\omega}(X) = E_0(Y_\omega \mid X) .$$

This fact plays a key role in how we will construct a prediction function.

Optimal weights

For any ω , the function $\psi_{0,\omega}$ gives the most accurate predictions of Y_{ω} .

We also want weights that lead to most accurate predictions of combined outcome.

Formally, we define

$$\omega_0 = \operatorname{argmax}_{\omega} R_{0,\omega}^2(\psi_{0,\omega}) .$$

The statistical goal is to estimate ψ_{0,ω_0} and ω_0 .

Caveats

The sense in which this combination is optimal is strictly related to prediction.

Not how well combined outcome measures "latent" outcome.

The optimal weights could give zero weight to some outcomes.

► These outcomes may still be important!

The procedure is best viewed as an exploratory analysis.

However, it can be fully pre-specified!

Outline

Motivation

Defining target parameters

- Measuring accuracy of predictions
- Optimal predictor and weights

Estimation

- Super learning
- ► Estimating weights

Evaluating predictions

- ► Estimation and inference
- ► Variable importance

Simulation

Data Analysis

Conclusions and future directions

Estimation

The statistical goal is to estimate ψ_{0,ω_0} and ω_0 .

At first glance, it looks like a difficult optimization problem,

$$\psi_{0,\omega_0} = \operatorname{argmax}_{\psi} R_{0,\omega_0}^2(\psi)$$

$$\omega_0 = \operatorname{argmax}_{\omega} R_{0,\omega}^2(\psi_{0,\omega})$$

The problem is made easier by recognizing

$$\psi_{0,\omega}(X) = E_0(Y_\omega \mid X) = E_0\left(\sum_{j=1}^J \omega_j Y_j \mid X\right) = \sum_{j=1}^J \omega_j E_0(Y_j \mid X) .$$

Estimation

For any ω , $\psi_{0,\omega}$ is weighted sum of conditional means.

This allows the optimization to be split up:

- 1. Estimate $E_0(Y_j \mid X)$ for j = 1, ..., J.
- 2. Combine estimates $\sum_{j=1}^{J} \omega_j \hat{E}(Y_j \mid X)$.
- 3. Optimize over weights using estimated prediction function.

However, we must take care to avoid overfitting!

Outline

Motivation

Defining target parameters

- Measuring accuracy of predictions
- Optimal predictor and weights

Estimation

- Super learning
- ► Estimating weights

Evaluating predictions

- ► Estimation and inference
- ► Variable importance

Simulation

Data Analysis

Conclusions and future directions

How should we estimate $E_0(Y_j \mid X)$ for a given j?

How should we estimate $E_0(Y_j \mid X)$ for a given j?

► Linear regression

How should we estimate $E_0(Y_j \mid X)$ for a given j?

► Linear regression, with interactions

How should we estimate $E_0(Y_j \mid X)$ for a given j?

► Linear regression, with interactions, and nonlinear terms

How should we estimate $E_0(Y_j \mid X)$ for a given j?

► Linear regression, with interactions, and nonlinear terms, or splines

How should we estimate $E_0(Y_j \mid X)$ for a given j?

► Linear regression, with interactions, and nonlinear terms, or splines (with different degrees?)

- ► Linear regression, with interactions, and nonlinear terms, or splines (with different degrees?)
- ► Penalized linear regression

- ► Linear regression, with interactions, and nonlinear terms, or splines (with different degrees?)
- ► Penalized linear regression, with different penalties?

- ► Linear regression, with interactions, and nonlinear terms, or splines (with different degrees?)
- ► Penalized linear regression, with different penalties?
- ► Random forests

- ► Linear regression, with interactions, and nonlinear terms, or splines (with different degrees?)
- ► Penalized linear regression, with different penalties?
- ► Random forests, with different tuning parameters?

- ► Linear regression, with interactions, and nonlinear terms, or splines (with different degrees?)
- ► Penalized linear regression, with different penalties?
- ► Random forests, with different tuning parameters?
- Gradient boosting?

- ► Linear regression, with interactions, and nonlinear terms, or splines (with different degrees?)
- ► Penalized linear regression, with different penalties?
- Random forests, with different tuning parameters?
- Gradient boosting? Support vector machines?

- ► Linear regression, with interactions, and nonlinear terms, or splines (with different degrees?)
- ► Penalized linear regression, with different penalties?
- ► Random forests, with different tuning parameters?
- ► Gradient boosting? Support vector machines? Deep neural networks?

- ► Linear regression, with interactions, and nonlinear terms, or splines (with different degrees?)
- ► Penalized linear regression, with different penalties?
- ► Random forests, with different tuning parameters?
- ► Gradient boosting? Support vector machines? Deep neural networks?
- Highly adaptive lasso?

- ► Linear regression, with interactions, and nonlinear terms, or splines (with different degrees?)
- ► Penalized linear regression, with different penalties?
- ► Random forests, with different tuning parameters?
- ► Gradient boosting? Support vector machines? Deep neural networks?
- Highly adaptive lasso?
- ► Variable selection?

- ► Linear regression, with interactions, and nonlinear terms, or splines (with different degrees?)
- ► Penalized linear regression, with different penalties?
- ► Random forests, with different tuning parameters?
- ► Gradient boosting? Support vector machines? Deep neural networks?
- ► Highly adaptive lasso?
- ► Variable selection?
- ► Ad infinitum...

How should we estimate $E_0(Y_j \mid X)$ for a given j?

- ► Linear regression, with interactions, and nonlinear terms, or splines (with different degrees?)
- ► Penalized linear regression, with different penalties?
- ► Random forests, with different tuning parameters?
- ► Gradient boosting? Support vector machines? Deep neural networks?
- ► Highly adaptive lasso?
- ► Variable selection?
- ► Ad infinitum...

The best algorithm for estimating depends on the (unknown) truth!

► Might be different for different outcomes.

We use $\psi : \mathcal{S} \to \Psi$ to denote an algorithm.

- ▶ S is all subsets of $\{1, ..., n\}$.
- Ψ is set of $\mathcal{X} \to \mathbb{R}$.

Given a data set, an algorithm:

- 1. takes as input a subset of observations;
- 2. uses observations to create a prediction function;
- 3. returns prediction function.

We refer to this process as training an algorithm.

Say we have M algorithms that could be used to estimate $E_0(Y_j \mid X)$.

Say we have M algorithms that could be used to estimate $E_0(Y_j \mid X)$.

How can we evaluate these algorithms?

► Train algorithms on full data, see which has largest empirical R².

Say we have M algorithms that could be used to estimate $E_0(Y_j \mid X)$.

- ► Train algorithms on full data, see which has largest empirical R².
 - Overfit!

Say we have M algorithms that could be used to estimate $E_0(Y_j \mid X)$.

- ► Train algorithms on full data, see which has largest empirical R².
 - Overfit!
- ► Train algorithms on full data, collect more data to evaluate R².

Say we have M algorithms that could be used to estimate $E_0(Y_j \mid X)$.

- ► Train algorithms on full data, see which has largest empirical R².
 - Overfit!
- ► Train algorithms on full data, collect more data to evaluate R².
 - Expensive!

Say we have M algorithms that could be used to estimate $E_0(Y_j \mid X)$.

- ► Train algorithms on full data, see which has largest empirical R².
 - Overfit!
- ► Train algorithms on full data, collect more data to evaluate R².
 - Expensive!
- ► Cross validation!

Consider randomly splitting the data into K different pieces.

S_1
S_2
S_3
S_4
S_5

Define first training, T_1 , and validation, V_1 , sample.

V_1
T_1
T_1
T_1
T_1

Train M algorithms using T_1 .

• $\psi_{j,m}(T_1)$, for $m=1,\ldots,M$

Withhold validation sample V_1 from training process.

► As though we did another experiment of size $|V_1|$!

Use validation sample to estimate MSE of each algorithm

$$\hat{\mathcal{E}}_{j,m,1}(\psi_{j,m}) = \frac{1}{|V_1|} \sum_{i \in V_1} \{Y_{j,i} - \psi_{j,m}(T_1)(X_i)\}^2.$$

Define second training, T₂, and validation, V₂, sample.

T_2
V_2
T_2
T_2
T_2

Train M algorithms using T_2 .

 $\blacktriangleright \ \psi_{j,m}(T_2), \text{ for } m=1,\ldots,M$

Withhold validation sample V_2 from training process.

► As though we did another experiment of size $|V_2|$!

Use validation sample to estimate MSE of each algorithm

$$\hat{\mathcal{E}}_{j,m,2}(\psi_{j,m}) = \frac{1}{|V_2|} \sum_{i \in V_2} \{Y_{j,i} - \psi_{j,m}(T_2)(X_i)\}^2.$$

Continue until each split has been validation once.

T_3
T_3
V_3
T_3
T_3

Continue until each split has been validation once.

T_4
T_4
T_4
V_4
T_4

Continue until each split has been validation once.

T_5
T_5
T_5
T_5
V_5

Cross-validation selector

The cross-validated MSE of algorithm m is

$$\hat{\mathcal{E}}_{j,m}(\psi_{j,m}) = \frac{1}{K} \sum_{k=1}^{K} \hat{\mathcal{E}}_{j,m,k}(\psi_{j,m}) .$$

We call the algorithm m^* with the lowest MSE the cross-validation selector.

We might use $\psi_{j,m^*}(F_n)$ as estimate of $E_0(Y_j \mid X)$, where $F_n = \{1, \dots, n\}$.

Ensemble estimator

What if $\psi_{j,1}$ and $\psi_{j,2}$ capture different features?

Using $\psi_{j,\rm SL}=0.5\psi_{j,1}+0.5\psi_{j,2}$ might be better than $\psi_{j,1}$ and $\psi_{j,2}$ alone.

More generally, consider an ensemble prediction function

$$\psi_{\rm j,SL} = \sum_{m=1}^{\rm M} \alpha_{\rm j,m} \psi_{\rm j,m} \;,\; \alpha_{\rm j,m} \geq 0 \; {\rm for \; all} \; m \;,\; {\rm and} \sum_{m=1}^{\rm M} \alpha_{\rm j,m} = 1 \;.$$

Easy to find α_j that minimizes cross-validated MSE.

Super learner

Stacked regression originally proposed in Breiman, 1996.

Referred to as a super learner due to oracle inequality results (van der Laan and Dudoit, 2003).

- ► MSE of the super learner is asymptotically equivalent to the oracle estimator.
- ► Even when one considers many estimators.
- ► Often seen to have good finite-sample performance (van der Laan et al, 2007).

Proving new oracle results is an open area of research!

► Recent work on Big Data oracle inequalities.

Outline

Motivation

Defining target parameters

- Measuring accuracy of predictions
- Optimal predictor and weights

Estimation

- Super learning
- Estimating weights

Evaluating predictions

- ► Estimation and inference
- ► Variable importance

Simulation

Data Analysis

Conclusions and future directions

Statistical goal

Difficult optimization problem,

$$\psi_{0,\omega_0} = \operatorname{argmax}_{\psi} R_{0,\omega_0}^2(\psi)$$

$$\omega_0 = \operatorname{argmax}_{\omega} R_{0,\omega}^2(\psi_{0,\omega}) ,$$

made easier because

$$\psi_{0,\omega} = \mathcal{E}_0\left(\sum_{j=1}^J \omega_j \mathcal{Y}_j \mid \mathcal{X}\right) = \sum_{j=1}^J \omega_j \mathcal{E}_0(\mathcal{Y}_j \mid \mathcal{X}) .$$

For any ω , combine super learners to estimate $\psi_{0,\omega}$,

$$\psi_{n,\omega} = \sum_{j=1}^{J} \omega_j \psi_{j,SL}(F_n) .$$

How do we estimate ω_0 ?

How do we estimate ω_0 ?

► Maximize empirical R² over weights.

$$\omega_n = \operatorname{argmax}_{\omega} \left(1 - \frac{\frac{1}{n} \sum_{i=1}^{n} \{ Y_{\omega,i} - \psi_{n,\omega}(X_i) \}^2}{\frac{1}{n} \sum_{i=1}^{n} \{ Y_{\omega,i} - \bar{Y}_{\omega} \}^2} \right)$$

How do we estimate ω_0 ?

► Maximize empirical R² over weights.

$$\omega_n = \operatorname{argmax}_{\omega} \left(1 - \frac{\frac{1}{n} \sum_{i=1}^{n} \{Y_{\omega,i} - \psi_{n,\omega}(X_i)\}^2}{\frac{1}{n} \sum_{i=1}^{n} \{Y_{\omega,i} - \bar{Y}_{\omega}\}^2} \right)$$

overfit!

How do we estimate ω_0 ?

► Maximize empirical R² over weights.

$$\omega_n = \operatorname{argmax}_{\omega} \left(1 - \frac{\frac{1}{n} \sum_{i=1}^{n} \{Y_{\omega,i} - \psi_{n,\omega}(X_i)\}^2}{\frac{1}{n} \sum_{i=1}^{n} \{Y_{\omega,i} - \bar{Y}_{\omega}\}^2} \right)$$

- overfit!
- ► Collect more data, maximize R² on new data.

Estimating optimal weights

How do we estimate ω_0 ?

► Maximize empirical R² over weights.

$$\omega_n = \operatorname{argmax}_{\omega} \left(1 - \frac{\frac{1}{n} \sum_{i=1}^{n} \{Y_{\omega,i} - \psi_{n,\omega}(X_i)\}^2}{\frac{1}{n} \sum_{i=1}^{n} \{Y_{\omega,i} - \bar{Y}_{\omega}\}^2} \right)$$

- overfit!
- ► Collect more data, maximize R² on new data.
 - expensive!

Estimating optimal weights

How do we estimate ω_0 ?

► Maximize empirical R² over weights.

$$\omega_n = \operatorname{argmax}_{\omega} \left(1 - \frac{\frac{1}{n} \sum_{i=1}^{n} \{Y_{\omega,i} - \psi_{n,\omega}(X_i)\}^2}{\frac{1}{n} \sum_{i=1}^{n} \{Y_{\omega,i} - \bar{Y}_{\omega}\}^2} \right)$$

- overfit!
- ► Collect more data, maximize R² on new data.
 - expensive!
- ► Cross validation!

Define first training, T_1 , and validation, V_1 , sample.

7	V_1
r	Γ_1

Cross validation

Train J super learners using T_1 .

 $\blacktriangleright \ \psi_{j,SL}(T_1), \text{ for } j=1,\ldots,J$

For any ω , we can construct combined super learner

$$\psi_{\omega,SL}(T_1) = \sum_{j=1}^{J} \omega_j \psi_{j,SL}(T_1) .$$

Withhold validation sample V_1 from super learner fitting.

▶ As though we did another experiment of size $|V_1|$!

For any ω , use validation sample to estimate MSE

$$\hat{\mathcal{E}}_{\omega,1}(\psi_{\omega,SL}) = \frac{1}{|V_1|} \sum_{i \in V_1} \{Y_{\omega,i} - \psi_{\omega,SL}(T_1)(X_i)\}^2.$$

Define second training, T_2 , and validation, V_2 , sample.

T_2
V_2
T_2
T_2
T_2

Train J super learners using T_2 .

 $\blacktriangleright \ \psi_{j,\mathrm{SL}}(\mathrm{T}_2), \, \mathrm{for} \, j=1,\ldots,\mathrm{J}$

For any ω , we can construct combined super learner

$$\psi_{\omega,SL}(T_2) = \sum_{j=1}^{J} \omega_j \psi_{j,SL}(T_2) .$$

Withhold validation sample V_2 from super learner fitting.

lacktriangle As though we did another experiment of size $|V_2|!$

For any ω , use validation sample to estimate MSE

$$\hat{\mathcal{E}}_{\omega,2}(\psi_{\omega,SL}) = \frac{1}{|V_2|} \sum_{i \in V_2} \{Y_{\omega,i} - \psi_{\omega,SL}(T_2)(X_i)\}^2.$$

Continue until each split has been used once.

T_3
T_3
V_3
T_3
T_3

Continue until each split has been used once.

T_4
T_4
T_4
V_4
T_4

Continue until each split has been used once.

T_5	
T_5	
T_5	
T_5	
V_5	
T_5	

Estimating weights

For any ω , we have cross-validated estimate of \mathbb{R}^2 ,

$$R_{n,\omega}^{2}(\psi_{\omega,SL}) = 1 - \frac{\frac{1}{K} \sum_{k=1}^{K} \hat{\mathcal{E}}_{\omega,k}(\psi_{\omega,SL})}{\frac{1}{n} \sum_{i=1}^{n} \{Y_{\omega,i} - \bar{Y}_{\omega}\}^{2}}.$$

Estimate of optimal weights is

$$\omega_n = \operatorname{argmax}_{\omega} R_{n,\omega}^2(\psi_{\omega,SL}) .$$

Outline

Motivation

Defining target parameters

- Measuring accuracy of predictions
- Optimal predictor and weights

Estimation

- Super learning
- ► Estimating weights

Evaluating predictions

- ► Estimation and inference
- ► Variable importance

Simulation

Data Analysis

Conclusions and future directions

How accurate is ψ_{n,ω_n} in predicting Y_{ω_n} ?

► Report $R_{n,\omega_n}^2(\psi_{\omega_n,SL})$, call it a day.

- ► Report $R_{n,\omega_n}^2(\psi_{\omega_n,SL})$, call it a day.
 - overfit!

- ► Report $R_{n,\omega_n}^2(\psi_{\omega_n,SL})$, call it a day.
 - overfit!
- ► Collect more data to evaluate predictions.

- ► Report $R_{n,\omega_n}^2(\psi_{\omega_n,SL})$, call it a day.
 - overfit!
- ► Collect more data to evaluate predictions.
 - expensive!

- ► Report $R_{n,\omega_n}^2(\psi_{\omega_n,SL})$, call it a day.
 - overfit!
- ► Collect more data to evaluate predictions.
 - expensive!
- ► More cross validation!!!

Doubly nested cross validation

Pictures omitted for the sanity of audience.

Cross-validate the entire procedure to estimate performance.

- ► Compute ω_n and ψ_{n,ω_n} in training sample
- ► Estimate R² in validation sample
- ► Average over splits

Formally, we define $\omega : \mathcal{S} \to \Omega$ and $\psi_{\omega, SL} : \mathcal{S} \to \Psi$.

The cross-validated R² estimate is

$$R_n^2(\omega_n,\psi_{n,\omega_n}) = 1 - \frac{\sum_{k=1}^K \frac{1}{|V_k|} \sum_{i \in V_k} \{Y_{\omega(T_k),i} - \psi_{\omega(T_k),SL}(X_i)\}^2}{\sum_{k=1}^K \frac{1}{|V_k|} \sum_{i \in V_k} \{Y_{\omega(T_k),i} - \bar{Y}_{\omega(T_k)}\}^2} \ .$$

Inference for predictive performance

In spite of the highly adaptive estimation procedure,

$$n^{1/2}\left\{R_n^2(\omega_n,\psi_{n,\omega_n})-R_0^2(\omega_n,\psi_{n,\omega_n})\right\} \to \text{Normal}(0,\sigma^2)$$
.

A sufficient condition is that ω_0 is unique.

▶ Possible to relax this condition (Luedtke et al, 2016).

Variance derived via delta method for influence functions.

► Consistently estimated with closed-form estimator.

Variance estimates used to construct closed-form confidence intervals and hypotheses tests.

► Machine learning with inference!

Variable importance

Define $R_0^2(\omega_n^d, \psi_{n,\omega_n}^d)$ as the true R^2 of the estimated super learner that leaves out $X_d, d = 1, ..., D$.

The "importance" of X_d could be quantified by

$$\Delta_{0n}^d = R_0^2(\omega_n, \psi_{n,\omega_n}) - R_0^2(\omega_n^d, \psi_{n,\omega_n}^d) .$$

How much did X_d improve predictions of combined outcome?

► Similar to random forest variable importance measures

Variable importance

Variable importance can be estimated as

$$\Delta_n^d = R_n^2(\omega_n, \psi_{n,\omega_n}) - R_n^2(\omega_n^d, \psi_{n,\omega_n}^d) .$$

We can still establish

$$n^{1/2}(\Delta_n^d - \Delta_{0n}^d) \to \text{Normal}(0, \sigma_d^2)$$
.

Variance can again be derived using delta method for influence functions.

Did X_d significantly improve predictions of combined outcome?

Outline

Motivation

Defining target parameters

- Measuring accuracy of predictions
- ► Optimal predictor and weights

Estimation

- Super learning
- ► Estimating weights

Evaluating predictions

- ► Estimation and inference
- ► Variable importance

Simulation

Data Analysis

Conclusions and future directions

Simulation

Covariates:

$$X_1, \dots, X_6 \sim Uniform(0, 4), X_7, \dots, X_9 \sim Bernoulli(0.5)$$

Outcomes:

$$\begin{split} Y_1 &= X_1 + 2X_2 + 4X_3 + X_7 + 2X_8 + 4X_9 + 2X_4 + \epsilon_1 \;, \\ Y_2 &= X_1 + 2X_2 + 4X_3 + X_7 + 2X_8 + 4X_9 + 2X_5 + \epsilon_2 \;, \text{ and} \\ Y_3 &= X_1 + 2X_2 + 4X_3 + X_7 + 2X_8 + 4X_9 + 2X_6 + \epsilon_3 \;, \end{split}$$

with $\epsilon_j \sim \text{Normal}(0, 5^2), j = 1, 2, 3$.

True parameters:

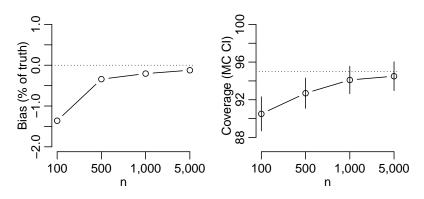
$$\omega_0=(\overline{\frac{1}{3}},\overline{\frac{1}{3}},\overline{\frac{1}{3}})$$
, $R_{0,\omega_0}^2=0.80$, $\Delta_0^2=0.12$.

Super learner:

intercept only, main terms, and stepwise linear model.

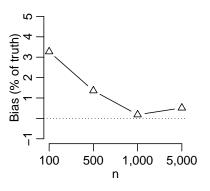
Simulation

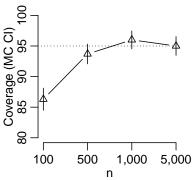
Bias and coverage for R_{n,ω_n}^2 (1000 replications).



Simulation

Bias and coverage for Δ_n^2 (1000 replications).





Outline

Motivation

Defining target parameters

- Measuring accuracy of predictions
- ► Optimal predictor and weights

Estimation

- Super learning
- ► Estimating weights

Evaluating predictions

- ► Estimation and inference
- ► Variable importance

Simulation

Data Analysis

Conclusions and future directions

Data analysis

Can we use neonatal information to predict neurocognitive outcomes later in life?

► Early identification of at-risk children.

What covariates are important for making predictions?

► Informs what information to collect to screen children.

Motivation: PROBIT

The Promotion of Breastfeeding Intervention Trial enrolled pregnant mothers in 1996–97.

Variables
breastfeeding encouraged
household animals
age, height, weight, education, siblings
employment status
gestational age, Apgar score
WAZ, HAZ, HCAZ (0,1,2,3,6,9,12 months)
mother smoked during pregnancy, mother
drank during pregnancy
Matrix, Block, Vocabulary, Similarities
-

Future directions

Effect estimation for discovery in high dimensions.

- ► Maximize effect instead of R²?
- ► Cross-validated TMLE (Zheng and van der Laan, 2010)

The method could be extended to binary outcomes, other performance metrics, and dependent data.

Nonlinear combinations of outcomes are also of interest.

 Alternating conditional expectations (Breiman and Friedman, 1985)

Software

R packages:

r2weight

Available on GitHub: https://github.com/benkeser/r2weight

SuperLearner (Polley et al, 2016)

► Demonstration - http://benkeser.github.io/sllecture/

References I

[3] Leo Breiman.

- [1] Michael S Kramer, Beverley Chalmers, Ellen D Hodnett, Zinaida Sevkovskaya, Irina Dzikovich, Stanley Shapiro, Jean-Paul Collet, Irina Vanilovich, Irina Mezen, Thierry Ducruet, et al. Promotion of breastfeeding intervention trial (PROBIT): a randomized trial in the Republic of Belarus. Journal of the American Medical Association, 285(4):413–420, 2001.
- [2] AB Feranil, SA Gultiano, and LS Adair. The Cebu Longitudinal Health and Nutrition Survey: Two Decades Later. Asia-Pacific Population Journal, 23(3), 2008.
- Stacked regressions.
 Machine Learning, 24(1):49–64, 1996.
- [4] Mark J van der Laan and Sandrine Dudoit. Unified cross-validation methodology for selection among estimators and a general cross-validated adaptive epsilon-net estimator: Finite sample oracle inequalities and examples. UC Berkeley Division of Biostatistics Working Paper Series, 2003.
- [5] Mark J van der Laan and Eric C Polley.Super learner.Statistical Applications in Genetics and Molecular Biology, 6(1):1–23, 2007.
- [6] Alexander R Luedtke, Mark J Van Der Laan, et al. Statistical inference for the mean outcome under a possibly non-unique optimal treatment strategy. The Annals of Statistics, 44(2):713-742, 2016.
- [7] Wenjing Zheng and Mark J van der Laan. Asymptotic theory for cross-validated targeted maximum likelihood estimation. UC Berkeley Division of Biostatistics Working Paper Series, 2010.
- [8] Leo Breiman and Jerome H Friedman. Estimating optimal transformations for multiple regression and correlation. Journal of the American Statistical Association, 80(391):580–598, 1985.

References II

 [9] Eric Polley, Erin LeDell, Chris Kennedy, and Mark van der Laan. SuperLearner: Super Learner Prediction, 2016.
 R package version 2.0-21.

Oracle Inequality

Let $L: \Psi \times \mathcal{O} \to \mathbb{R}$ be a loss function for ψ_0 in the sense that

$$\psi_0 = \text{argmin}_{\psi \in \Psi} E_0\{L(\psi)(O)\} \ .$$

Define $d_0(\psi, \psi_0) := \mathbb{E}_0\{L(\psi)(O) - L(\psi_0)(O)\}$ and let p be the proportion of observations in the validation sample. Assume

- 1. $\psi_{n,m} \in \Psi$ with probability tending to one for m = 1, ..., M.
- 2. For some $C_0 < \infty$, $\sup_{\psi \in \Psi} d_0(\psi, \psi_0) < C_0$ almost surely.
- 3. For some $C_1 < \infty$, $E_0\{L(\psi)(O) L(\psi_0)(O) d_0(\psi, \psi_0)\}^2 \le C_1 d_0(\psi, \psi_0)$ for all $\psi \in \Psi$.

For every $\lambda > 0$ and $C(\lambda) := \frac{2}{3}(1+\lambda)^2(C_0 + C_1)$,

$$\begin{split} & \mathbb{E}_{\mathbb{B}_{n}} \big\{ d_{0}(\psi_{n, \text{SL}}, \psi_{0}) \big\} \\ & \leq (1 + 2\lambda) \mathbb{E}_{\mathbb{B}_{n}} \big\{ d_{0}(\psi_{n, \text{OR}}, \psi_{0}) \big\} + 2\mathbb{C}(\lambda) \bigg(\frac{1 + \log K(n)}{np} \bigg) \end{split}$$

Asymptotics

The cross-validated R^2 estimate is

$$R_n^2(\omega_n, \psi_{n,\omega_n}) = 1 - \frac{\sum_{k=1}^K \frac{1}{|V_k|} \sum_{i \in V_k} \{Y_{\omega(T_k),i} - \psi_{\omega(T_k),SL}(X_i)\}^2}{\sum_{k=1}^K \frac{1}{|V_k|} \sum_{i \in V_k} \{Y_{\omega(T_k),i} - \bar{Y}_{\omega(T_k)}\}^2}$$
$$= 1 - \frac{\theta_{1,n}}{\theta_{2,n}}$$

For $k = 1, \dots, K$, define

$$\begin{split} &D_{0n,k}(\psi_{\omega})(O) \\ &:= \{Y_{\omega(T_k)} - \psi_{\omega(T_k)}(T_k)(X)\}^2 - E_0\left[\{Y_{\omega(T_k),i} - \psi_{\omega(T_k),SL}(X_i)\}^2\right] \;, \\ &D_{0n,k}(\bar{Y}_{\omega})(O) \\ &:= \{Y_{\omega(T_k)} - \bar{Y}_{\omega(T_k)}\}^2 - E_0\left[\{Y_{\omega(T_k),i} - \bar{Y}_{\omega(T_k)}(X_i)\}^2\right] \;. \end{split}$$

Asymptotics

$$n^{1/2}(\theta_{1,n} - \theta_{1,0}) \to \text{Normal}(0, \sigma_1^2), \text{ with }$$

$$\sigma_1^2 = \frac{1}{K} \sum_{k=1}^K E_0 \{ D_{0n,k}(\psi_{\omega_0})(O)^2 \} .$$

 $n^{1/2}(\theta_{2,n} - \theta_{2,0}) \to \text{Normal}(0, \sigma_2^2), \text{ with }$

$$\sigma_2^2 = \frac{1}{K} \sum_{k=1}^K E_0 \{ D_{0n,k}(\bar{Y}_{\omega_0})(O)^2 \} .$$

Let $D_{0n,k}(\psi_{\omega}, \bar{Y}_{\omega}) = (D_{0n,k}(\psi_{\omega}), D_{0n,k}(\bar{Y}_{\omega}))^{T}$, $g(\theta) = \log(\theta_{1}/\theta_{2})$, and $\nabla g(\theta) = (1/\theta_{1}, -1/\theta_{2})^{T}$.

Asymptotics

We have $n^{1/2}\{g(\theta_n) - g(\theta_0)\} \to \text{Normal}(0, \sigma_3^2)$, where σ_3^2 is

$$\nabla g(\theta_0)^{\mathrm{T}} \frac{1}{K} \sum_{k=1}^{K} \mathrm{E}_0 \{ \mathrm{D}_{0n,k}(\psi_{\omega_0}, \bar{\mathrm{Y}}_{\omega_0})(\mathrm{O}) \mathrm{D}_{0n,k}(\psi_{\omega_0}, \bar{\mathrm{Y}}_{\omega_0})(\mathrm{O})^{\mathrm{T}} \} \nabla g(\theta_0) .$$

Canonical correlation

Let
$$Y_{\alpha} = \sum_{j=1}^{J} \alpha_j Y_j$$
 and $X_{\beta} = \sum_{d=1}^{D} \beta_d X_d$.

The first-order canonical variate of X and Y is found by maximizing

$$\frac{E_0\{(Y_{\alpha}-\mu_{0,\alpha})(X_{\beta}-\mu_{0,\beta})\}}{E_0\{(Y_{\alpha}-\mu_{0,\alpha})^2\}E_0\{(X_{\beta}-\mu_{0,\beta})^2\}}$$

over α and β under constraint that variances equal one.

The canonical correlation is the correlation between $X_{\beta,0}$ and Y_{α_0} .

Canonical correlation

If $\psi_{0,j} = X_{\beta}$ for all j = 1, ..., J, the optimal \mathbb{R}^2 equals the squared first-order canonical correlation.

To illustrate difference, consider

- ► X_d ~ Normal(0,1), d = 1, 2
- ► $Y_j = X_j^2 \text{ for } j = 1, 2$

Canonical correlation measures linear association between X and Y.

► Canonical correlation equals zero.

Optimal \mathbb{R}^2 measures how well we predict Y using X.

► Optimal R² equals one.