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ABSTRACT

Data are precious. Missing values are unavoidable. Instead of throwing away incomplete observations or imputing
missing values ad hoc, what would be a better way to analyze data with random missing values? The full information
maximum likelihood (FIML) method of the CALIS procedure in SAS/STAT® 9.22 and later enables you to use all the
available information in your data to estimate your structural equation models. This paper illustrates how you can use
PROC CALIS to deal with random missing values in the following data-analytic situations: (1) estimating means and
covariances, (2) regression analysis, and (3) structural equation or path modeling.

Other methods for treating incomplete observations are described in a systematic manner. The FIML method is supe-
rior to the ad hoc methods for analysis with incomplete observations. With PROC CALIS, the FIML method is more
convenient than the multiple imputation (MI) method for fitting path or structural equation models with incomplete ob-
servations. This paper also illustrates some new features of PROC CALIS for analyzing missing patterns and data
coverages.

INTRODUCTION

Missing data are common in practical research studies. For example, a patient might forget a follow-up appointment
with the research laboratory that takes his blood pressure measurements after a treatment. A respondent to a job
satisfaction questionnaire might skip some items (or questions) in a survey. The responses from the patient and the
respondent in the survey are referred to as incomplete observations. That is, an incomplete observation is a research
unit (for example, the patient or the respondent in the preceding examples) that has at least one missing value (but not
all missing) in the set of observed variables. In contrast, a complete observation refers to a research unit that has no
missing values.

Most statistical analyses and software are traditionally developed for complete observations only. Incomplete obser-
vations with missing values cannot be handled and therefore are routinely excluded from statistical analyses, even
though some incomplete observations have only a small portion of missing values. This results in the loss of valuable
information that could have led to more reliable statistical estimation. This problem becomes more serious when the
total number of observations in the data set is not very large and the researcher needs to use every bit of precious
information from the data.

The full information maximum likelihood (FIML) method presented in this paper is an estimation method that uses the
information from both the incomplete and the complete observations. The FIML estimation method for treating random
missing data or incomplete observations is not limited to structural equation modeling (SEM); other types of analyses
can also use the FIML estimation for treating incomplete observations. However, this paper focuses on the structural
equation models that are analyzed by PROC CALIS, which introduced FIML estimation for handling incomplete obser-
vations data in SAS/STAT 9.22 and adds features for analyzing data coverages and missing patterns in SAS/STAT 9.3.
Because SEM subsumes measurement error models, path analyses, regression models, LISREL models, and factor
analyses as special cases, the FIML method of the CALIS procedure has a wide range of applications.

The remainder of this paper is organized as follows: First, some traditional and modern methods for treating incomplete
observations are described and compared. All these methods are illustrated with the estimation of the population
means and covariances. Second, the FIML method is shown to be superior to the traditional methods for treating
incomplete observations. Because of its availability in PROC CALIS, the FIML method is also more convenient to use
than the multiple imputation method, which has statistical properties similar to those of the FIML method. Third, the
FIML estimation is illustrated by applying PROC CALIS to a regression problem with incomplete observations. Output
from PROC CALIS is described and interpreted. Estimation results from PROC CALIS are compared with the results
obtained from PROC REG, which uses listwise deletion to simply ignore the incomplete observations. Fourth, the
FIML method of PROC CALIS is applied to a structural equation model. In addition to the FIML estimation of the
model parameters, this application also illustrates how you can use PROC CALIS to study the data coverages of the
sample moments and to analyze the missing patterns. Fifth, the options and controls related to the FIML method of
PROC CALIS are described in detail. Finally, some limitations of the FIML method are described, followed by some
concluding comments.
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METHODS FOR TREATING INCOMPLETE OBSERVATIONS

Various methods have been proposed for treating incomplete observations in statistical analysis. This section first
describes conventional ad hoc missing data methods and then describes the more principled methods such as the
FIML and the multiple imputation methods. A comprehensive review of all existing incomplete data methods is not
intended.

The following fictitious data, which are read in the SAS DATA step, are used to illustrate various incomplete data
methods:

data miss1;
input ID x1 x2 x3 x4 x5;
datalines;

1 2 3 6 7 .
2 . 3 5 2 6
3 6 5 4 1 5
4 7 6 . 1 7
5 6 7 7 2 6
6 2 3 1 . 7
7 1 1 2 6 9
8 3 5 6 2 1
9 5 . . 1 8
10 4 4 4 1 2
11 2 2 5 5 7
12 3 4 2 6 8
;

Missing data values are represented by the dots in the data set. Observations (as indicated by the ID variable) 1, 2, 4, 6,
and 9 have missing values for one or more variables. These five observations are incomplete observations. The others
are complete observations. Suppose you want to estimate the population means and covariances of all the x-variables.
If the data set contained all complete data, the estimates would have been the sample means and covariances based
on all observations. With the presence of incomplete data, there could be different possibilities.

Pairwise Deletion (PD) Method

Without thinking much about how to treat the incomplete observations, you might simply submit this data set to the
CORR procedure to obtain the means and covariances, just as you do with complete data:

proc corr data=miss1 cov;
var x1-x5;
run;

Output 1 shows the estimates of the covariances and the means. The second table of Output 1 shows that the sample
sizes for computing the means are different for the variables. For example, the mean for x3 is computed by averaging
N=10 nonmissing values, while all other variable means are computing based on N=11 nonmissing values. Similarly,
the first table of Output 1 shows that the covariances are computed based on different degrees of freedom (that is,
different variance divisors), which range from 8 to 10. For example, the covariance between x1 and x3 is computed
based on N=9 observations (hence with DF=8). In computing this covariance, observations 2, 4, and 9 have been
excluded because they have at least one missing value in the x1-x3 variable-pair. The covariance between x1 and x5
is computed based on N=10 observations (hence with DF=9) because incomplete observations 1 and 2 are excluded.
The mean and covariance computations here exemplify the pairwise deletion (PD) method for treating the incomplete
observations. The estimates of means and covariances are computed based on the corresponding available cases
(observations) with nonmissing values. For this reason, the PD method is sometimes called the available-case analysis.
In this sense, the PD method uses all the available information from the data. With the PD method, different estimates
are computed based on different sets of observations. As a result, this method might lead to a covariance matrix that
is not positive-definite.
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Output 1 Covariances and Means Computed from the Pairwise Deletion (PD) Method

Variances and Covariances
Covariance / Row Var Variance / Col Var Variance / DF

x1 x2 x3 x4 x5

x1 4.018181818 3.333333333 1.597222222 -4.088888889 -0.777777778
4.018181818 4.266666667 3.194444444 4.100000000 4.100000000
4.018181818 3.333333333 4.361111111 6.177777778 6.888888889

10 9 8 9 9

x2 3.333333333 3.090909091 1.733333333 -2.888888889 -1.777777778
3.333333333 3.090909091 2.900000000 3.333333333 3.333333333
4.266666667 3.090909091 3.955555556 5.788888889 6.400000000

9 10 9 9 9

x3 1.597222222 1.733333333 3.955555556 -1.347222222 -2.750000000
4.361111111 3.955555556 3.955555556 3.027777778 4.000000000
3.194444444 2.900000000 3.955555556 5.777777778 7.000000000

8 9 9 8 8

x4 -4.088888889 -2.888888889 -1.347222222 5.690909091 2.855555556
6.177777778 5.788888889 5.777777778 5.690909091 4.455555556
4.100000000 3.333333333 3.027777778 5.690909091 6.766666667

9 9 8 10 9

x5 -0.777777778 -1.777777778 -2.750000000 2.855555556 6.200000000
6.888888889 6.400000000 7.000000000 6.766666667 6.200000000
4.100000000 3.333333333 4.000000000 4.455555556 6.200000000

9 9 8 9 10

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

x1 11 3.72727 2.00454 41.00000 1.00000 7.00000
x2 11 3.90909 1.75810 43.00000 1.00000 7.00000
x3 10 4.20000 1.98886 42.00000 1.00000 7.00000
x4 11 3.09091 2.38556 34.00000 1.00000 7.00000
x5 11 6.00000 2.48998 66.00000 1.00000 9.00000

Listwise Deletion (LD) Method

Unlike the PD method that uses all available information from the incomplete observations, the listwise deletion (LD)
method (also called the complete case analysis) estimates the means and covariances based on the complete obser-
vations only. In other words, the LD method excludes all incomplete observations from the analysis. The LD method
corresponds to the use of the NOMISS option in the PROC CORR statement, as shown in the following statements:

proc corr data=miss1 cov nomiss;
var x1-x5;
run;

The NOMISS option excludes incomplete observations 1, 2, 4, 6, and 9 from the computations of the mean and
covariance estimates. Output 2 shows the estimates of covariances and the means with the LD method.

Output 2 Covariances and Means Computed from the Listwise Deletion (LD) Method

Covariance Matrix, DF = 6

x1 x2 x3 x4 x5

x1 3.619047619 3.333333333 1.809523810 -3.357142857 -1.952380952
x2 3.333333333 4.000000000 2.500000000 -3.166666667 -2.833333333
x3 1.809523810 2.500000000 3.571428571 -2.595238095 -2.976190476
x4 -3.357142857 -3.166666667 -2.595238095 5.238095238 5.523809524
x5 -1.952380952 -2.833333333 -2.976190476 5.523809524 8.952380952

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

x1 7 3.57143 1.90238 25.00000 1.00000 6.00000
x2 7 4.00000 2.00000 28.00000 1.00000 7.00000
x3 7 4.28571 1.88982 30.00000 2.00000 7.00000
x4 7 3.28571 2.28869 23.00000 1.00000 6.00000
x5 7 5.42857 2.99205 38.00000 1.00000 9.00000
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The second table of Output 2 shows that all the means are computed based on the seven complete observations.
This set of seven complete observations is also used for computing the covariance matrix in the first table of Output 2.
Hence, the LD method uses much less information in estimation than the PD method, which uses at least nine data
values in estimating each sample mean or covariance.

Mean Imputation Method

The mean imputation method replaces all the missing values with their corresponding variable means (from the avail-
able cases) and then carries out the estimation as if there were no incomplete observations. For example, you can
impute those means obtained from the PD method (available-case analysis) shown in Output 1 for the corresponding
missing values in the original data set to form a pseudo-complete data set. The following statements do such mean
imputations on the miss1 data set and then obtain the means and covariances by running the CORR procedure with
the pseudo-complete data set miss2:

data miss2;
set miss1;
if (x1 = .) then x1 = 3.72727;
if (x2 = .) then x2 = 3.90909;
if (x3 = .) then x3 = 4.20000;
if (x4 = .) then x4 = 3.09091;
if (x5 = .) then x5 = 6.00000;

run;

proc corr data=miss2 cov;
var x1-x5;
run;

Output 3 shows the estimates of covariances and means from the mean imputation method.

Output 3 Covariances and Means Computed from the Mean Imputation Method

Covariance Matrix, DF = 11

x1 x2 x3 x4 x5

x1 3.652892562 2.716754440 1.198346909 -3.328324440 -0.636363636
x2 2.716754440 2.809917355 1.418181818 -2.346356026 -1.471074545
x3 1.198346909 1.418181818 3.236363636 -0.844628364 -1.945454545
x4 -3.328324440 -2.346356026 -0.844628364 5.173553719 2.371900909
x5 -0.636363636 -1.471074545 -1.945454545 2.371900909 5.636363636

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

x1 12 3.72727 1.91125 44.72727 1.00000 7.00000
x2 12 3.90909 1.67628 46.90909 1.00000 7.00000
x3 12 4.20000 1.79899 50.40000 1.00000 7.00000
x4 12 3.09091 2.27454 37.09091 1.00000 7.00000
x5 12 6.00000 2.37410 72.00000 1.00000 9.00000

The sample size used in the computing the means and covariances is 12, which is the same as the total number of
observations in the original data set. This sample size has been inflated due to the use of the pseudo-complete data
set miss2, which imputes the means for the missing values as if they were actually observed. In this sense, the mean
imputation method overuses the information from the original data. As a result, it overstates the certainty of the imputed
values and the estimates. The same fact can also be illustrated by the following observation. The mean imputation
method shows the same set of mean estimates in Output 3 as that of the PD method, as shown in Output 1. However, all
the variance and covariance estimates in Output 3 for the mean imputation method are smaller than the corresponding
PD estimates in Output 1. Therefore, even though the mean imputation method does not alter the means from the
available-case analysis, it does make the data distribution look more centralized (that is, with observations more alike)
than it is. Hence, the mean imputation method underestimates the true variability of the variables and the sampling
errors of the estimates.

Summary of Various Methods for Treating Incomplete Observations

So far, the three conventional methods for treating incomplete observations are ad hoc methods because they do not
propose a probability model to account for the missingness. These methods “work” simply because their implemen-
tations enable statistical software to generate output as usual. Whether the estimates obtained from these ad hoc
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methods have desirable statistical properties is another story. Nonetheless, the “ad hoc” label for these methods does
not imply that these methods must be bad in all situations. In fact, under certain (restrictive) assumptions about the
nature of the missingness, some of these ad hoc methods might possess some desirable statistical properties. The
section “Advantages and Disadvantages of the FIML Method Compared with the MI Method” on page 10 discusses
these relative advantages and disadvantages in more detail.

The ad hoc methods discussed so far are summarized in Table 1, according to how they deal with the missing values
in the incomplete observations:

Table 1 Treatment of Incomplete Observations by Various Methods

Ad Hoc Methods More Principled Methods
Incomplete
Observations
Treatment

LD PD Mean
Imputation

FIML Multiple
Imputation

Not analyzed x
Analyzed without imputation x x
Analyzed with imputation x x

The LD method does not analyze any incomplete observations, so it necessarily entails a loss of information. On the
other hand, the mean imputation method imputes variable means for the missing values and then treats the data set
as if it contained only complete observations. This entails an inflation of the certainty of the (imputed) information.
As a result, standard errors of the estimates are usually underestimated by the mean imputation methods. The PD
method might use just about the right amount of information from the incomplete observations. It does not abandon the
available information in the incomplete observations nor does it create pseudo-values for the missing data to inflate the
amount of information.

Note that the mean imputation method represents a single imputation method, to be distinguished from the multiple
imputation (MI) method, which is also included in Table 1 for comparison. There are other variants of the single
imputation method, including the similar response pattern imputation (SRPI) method (see, for example, Jöreskog and
Sörbom 1993), and imputation methods based on regression or sampling from other responses in the data (that is,
hot-deck imputation). All these methods replace the missing values by some imputed values so that the statistical
analysis can be carried out as usual.

In contrast with the ad hoc methods, two principled methods, the full information maximum likelihood (FIML) and the
multiple imputation (MI) methods, are also shown in Table 1. The FIML method can be viewed as a more theory-
driven counterpart of the PD method. Both the FIML and PD methods analyze the incomplete observations without
imputations, but the FIML method analyzes the model under the likelihood principle. The MI method can be viewed
as a more advanced counterpart of the single imputation method, as represented by the mean imputation method.
Both the MI and mean imputation methods analyze data with imputations for the missing values, but the MI method
analyzes many imputation samples so as to take the uncertainty of the imputed values into account properly. The next
two sections describe the two principled methods in more detail.

Not all methods for treating incomplete observations are included here, but this summary provides a framework for
understanding various types of missing data methods in practical research. See, for example, Gold, Bentler, and Kim
(2003) for a more complete overview of various techniques for treating incomplete observations in the field of structural
equation modeling.

Full Information Maximum Likelihood (FIML) Method

The full information maximum likelihood (FIML) method is a principled estimation method that treats complete and in-
complete observations in an integrated manner. Basically, the FIML estimation maximizes the sum of the log-likelihood
functions for individual observations, including both complete and incomplete observations, as shown in the expression

F D
1

N

NX
jD1

.ln.j†j j/C .xj � �j /
0†�1

j .xj � �j /CKj /

where xj is a data vector for observation j , and Kj is a constant term independent of the model parameters ‚.
Individual observations xj ’s are not required to have the same dimensions. For example, x1 could be a complete
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vector with the presence of all p variables while x2 is a .p � 1/ � 1 vector with one missing value that has been
excluded from the original p � 1 data vector. As a consequence, subscript j is also used in �j and †j to denote the
subvector and submatrix, respectively, that are extracted from the entire p � 1 structured mean vector � (� D �.‚/)
and p � p covariance matrix † († D †.‚/). In other words, in the current formulation, �j and †j do not mean that
each observation is fitted by distinct mean and covariance structures (although theoretically it is possible to formulate
FIML in such a way). The notation simply signifies that the dimensions of xj and the associated mean and covariance
structures could vary from observation to observation.

Because the log-likelihood function for individual observations contains only the nonmissing variables, you can view the
FIML method as a principled version of the PD method (available-case analysis). Like the PD method, the FIML method
does not impute missing values in the estimation. Unlike the PD method, the FIML method ties to the model of interest
directly. Model parameters are estimated directly by maximizing the likelihood function of the model parameters, which
might not be as simple as population means and covariances. In contrast, the PD method first computes sample
statistics such as the covariance matrix and the mean vector. Then it estimates the model parameters through these
sample statistics.

To continue the previous data example, you can use the following statements to perform FIML estimation of the popu-
lation means and covariances with the miss1 data set:

proc calis data=miss1 method=fiml;
mstruct var=x1-x5;
run;

Although PROC CALIS is designed as a procedure for general structural equation modeling, it supports a wide variety
of models, including regression, factor analysis, measurement error models, and so on. You can also use PROC
CALIS to fit an unstructured model such as the one shown here. The preceding statements specify an MSTRUCT
(matrix structure) model with all the x-variables in the miss1 data set. By default, the means and covariances of such
an MSTRUCT model are unstructured, which means that all elements in the population covariance matrix and mean
vector are mathematically independent parameters. You specify METHOD=FIML so that PROC CALIS carries out a full
information maximum estimation of the population means and covariances.

Output 4 shows some basic modeling information about the current data set. PROC CALIS identifies seven complete
observations and five incomplete observations in the data set. All these observations are used in the estimation.

Output 4 Modeling Information about the Incomplete Data

Modeling Information

Data Set WORK.MISS1
N Records Read 12
N Complete Records 7
N Incomplete Records 5
N Complete Obs 7
N Incomplete Obs 5
Model Type MSTRUCT
Analysis Means and Covariances

Output 5 shows the estimates of population means and covariances by the FIML method of PROC CALIS.

Output 5 Means and Covariances Estimated by the FIML Method

MSTRUCT _Mean_ Vector

Standard
Variable Estimate Error t Value

x1 3.75216 0.52975 7.08289
x2 3.79040 0.48112 7.87834
x3 4.46354 0.58507 7.62911
x4 3.32587 0.66907 4.97089
x5 6.36549 0.74780 8.51226
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Output 5 continued

MSTRUCT _COV_ Matrix: Estimate/StdErr/t-value

x1 x2 x3 x4 x5

x1 3.3611 2.3196 1.7248 -3.4898 -1.2238
1.3748 1.1079 1.1839 1.5880 1.4172
2.4448 2.0937 1.4568 -2.1976 -0.8635

x2 2.3196 2.7530 1.4872 -2.0884 -1.8747
1.1079 1.1334 1.0669 1.2678 1.3585
2.0937 2.4289 1.3940 -1.6472 -1.3800

x3 1.7248 1.4872 3.6784 -2.1391 -0.8334
1.1839 1.0669 1.6184 1.4897 1.5354
1.4568 1.3940 2.2728 -1.4359 -0.5428

x4 -3.4898 -2.0884 -2.1391 5.3601 3.7521
1.5880 1.2678 1.4897 2.1930 2.0435
-2.1976 -1.6472 -1.4359 2.4442 1.8361

x5 -1.2238 -1.8747 -0.8334 3.7521 6.6711
1.4172 1.3585 1.5354 2.0435 2.7390
-0.8635 -1.3800 -0.5428 1.8361 2.4356

In addition to the estimates, PROC CALIS also computes the standard errors and t values for these estimates. Appar-
ently, PROC CALIS produces a set of estimates that is different from those of the ad hoc methods. Why should you
trust the FIML estimates more than the ad hoc methods? The section “Advantages and Disadvantages of the FIML
Method Compared with the MI Method” on page 10 justifies the FIML estimation.

FIML or ML? A Clarification

This section clarifies the “full information” terminology as used in the FIML method. Because this section is not essential
for understanding the FIML methodology, you might choose to skip this section.

The FIML method for treating incomplete observations is sometimes called the direct maximum likelihood method
because the FIML method is basically an ML estimation applied directly on individual observations. In fact, some
statistical literature simply refers this method to as the ML method for incomplete data analysis. The “full information”
qualifier is dropped. So, why add the “full information” qualifier when the ML label is already a clear terminology that
describes the principle behind the missing data methodology?

In the literature of structural equation modeling (SEM), the ML estimation has been designated as an estimation method
that fits the model covariance (and mean) structures to the sample covariance matrix (and mean vector) under the
multivariate normal theory. Individual observations are not directly used in such an ML estimation. However, this does
not mean that the ML method in SEM is not a “full information” method. When the data set contains only complete
observations, under the multivariate normal distribution assumption the ML method in SEM is in fact a full information
ML method, which means that analyzing the sample covariance matrix (and the sample mean vector) does not lose
any information as compared with the analysis based on individual observations.

Therefore, the “full information” qualifier in FIML reflects more about the incomplete data treatment than about the
underlying estimation principle. With the “full information” qualifier, the incomplete observations are included in the
estimation. Without the “full information” qualifier, the incomplete observations are all excluded in the estimation. This
is also how PROC CALIS distinguishes between the METHOD=FIML and METHOD=ML options. These two options
essentially lead to the same estimation results if the data set contains only complete observations. However, if your data
set contains missing values in the analysis variables, you must use the METHOD=FIML option to enjoy the advantages
of the maximum likelihood estimation with incomplete observations.

Multiple Imputation (MI) Method

The multiple imputation (MI) method is considered to be an advanced version of the single imputation method (such
as the mean imputation method) but with the uncertainty of the imputed values taken into account. See, for example,
Sinharay, Stern, and Russell (2001) or Schafer and Olsen (1998) for a nontechnical overview of the MI method. By
assuming a statistical model for the data, the MI method generates random values from certain conditional distributions
to replace the missing values in the original sample. Such an imputed sample is then analyzed by the target statistical
model as if it contained all complete observations. The MI method then repeats the process several times (usually 5–10
times) by drawing multiple imputed samples for model fitting and estimation. The analytic results from all the imputed
samples are then combined in such a way that the uncertainty of the imputed values is taken into account properly.
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The following statements apply the MI method to estimate the population means and covariances of the miss1 data set:

/*------ Stage 1: Use PROC MI to generate 20 imputation samples ------*/
proc mi data=miss1 nimpute=20 seed=135782 out=ImputedSamples;

var x1-x5;
run;

/*---- Stage 2: Use PROC CALIS to analyze the 20 imputed samples ----*/
proc calis data=ImputedSamples

outmodel=Est(rename=(_name_=parm _estim_=estimate _stderr_=stderr));
mstruct var=x1-x5;
matrix _cov_ = s11

s12 s22
s13 s23 s33
s14 s24 s34 s44
s15 s25 s35 s45 s55;

matrix _mean_ = m1-m5;
by _Imputation_;

run;

/*---- Stage 3: Use PROC MIANALYZE to combine the estimation results ----*/
proc mianalyze parms=Est;

modeleffects s11 s12 s22 s13 s23 s33 s14 s24 s34 s44 s15 s25 s35 s45 s55
m1 m2 m3 m4 m5;

run;

As indicated by the preceding specification, the MI method has three stages:

� The first stage generates the imputed samples by using the MI procedure. In the PROC MI statement, the DATA=
option specifies the original data set that might contain missing values. The NIMPUTE= option requests 20
imputed samples in which the missing values are replaced with the generated random values. The SEED= option
specifies the seed for random number generation in the imputation process. This option is not required but is
used here to enable future replications of the results. Otherwise, PROC MI uses different seeds for generating
imputed samples each time, making replications impossible. The OUT= option stores the 20 imputed data sets
in a single SAS data set called ImputedSamples. PROC MI uses a variable called _Imputation_ to index the 20
imputed data sets within the OUT= data set.

� The second stage analyzes the sample means and covariances of the 20 imputed samples by using the CALIS
procedure. You could have used some simpler procedures such as PROC CORR to compute the means and
covariances. PROC CALIS is used here because the code is comparable to what has been done previously
with the FIML estimation. In addition, PROC CALIS provides a handy way to name all the parameters in the
analysis model. In the PROC CALIS statement, you use the DATA= option to specify ImputedSamples as the
data set that contains the imputed samples. The BY statement specifies that the variable _Imputation_ is the
BY-group variable for indexing the 20 imputed samples (or 20 BY groups) in the input data set. PROC CALIS
carries out separate model estimation for these 20 imputed samples as BY groups. The OUTMODEL= option
in the PROC CALIS statement stores all 20 estimation results in the SAS data set named Est. Some of the
variable names in this data set are renamed so that they are compatible with the MIANALYZE procedure in the
next stage. Next, the MSTRUCT statement specifies the set of analysis variables x1–x5 in the VAR= option.
Like the PROC CALIS specification for the FIML method in a preceding section, the MSTRUCT statement here
specifies an unstructured model in which all variable means and covariances are distinct parameters of interest.
The additional specifications with the two MATRIX statements label the parameters in the covariance matrix and
the mean vector. That is, parameters with the “s” prefix are for naming the covariances, and parameters m1–m5
are for naming the variable means.

� The last stage of the MI method combines the estimation results of the 20 imputed samples. In the PROC MIANA-
LYZE statement, the PARMS= option specifies that the SAS data set Est contains the estimates of the 20 imputed
samples. The MODELEFFECTS statement specifies that the parameters of interest are those covariance and
mean parameters that are named by the CALIS procedure in the previous stage. PROC MIANALYZE combines
the 20 estimation results and shows the final estimation results in Output 6.
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Output 6 Means and Covariances Estimated by the MI Method

Parameter Estimates

Parameter Estimate Std Error

s11 3.670674 1.565353
s12 2.542071 1.265561
s22 3.007762 1.295771
s13 2.055875 1.757924
s23 1.780442 1.401083
s33 4.995708 3.061973
s14 -3.767178 1.796987
s24 -2.279206 1.444503
s34 -2.388182 2.051419
s44 5.771349 2.482014
s15 -1.365900 1.655267
s25 -2.047802 1.572461
s35 -0.858875 1.943426
s45 4.146591 2.404187
s55 7.540717 3.453811
m1 3.749265 0.578620
m2 3.796816 0.526994
m3 4.510968 0.765780
m4 3.307360 0.726599
m5 6.382312 0.836285

Overall, the MI estimates are similar to those obtained from the FIML method and are shown in Output 5. Table 2
summarizes the mean estimates by various methods for the miss1 data set.

Table 2 Mean Estimates by Various Missing Data Methods for the miss1 Data Set

Variable
LD PD Mean

Imputation
FIML MI

x1 3.57143 3.72727 3.72727 3.75216 3.749265
x2 4.00000 3.90909 3.90909 3.79040 3.796816
x3 4.28571 4.20000 4.20000 4.46354 4.510968
x4 3.28571 3.09091 3.09091 3.32587 3.307360
x5 5.42857 6.00000 6.00000 6.36549 6.382312

As discussed previously, the PD and the mean imputation methods have the same set of mean estimates—an artifact
created by imputing means for the missing values in the latter method. The FIML and the MI methods produce similar
sets of mean estimates. The sets of estimates produced by the ad hoc methods are somewhat different from those of
the FIML and the MI methods. For example, the FIML and the MI mean estimates for x5 match quite well, while all the
ad hoc methods produce much smaller mean estimates for x5.

In summary, this section illustrates different methods for treating incomplete observations. Different methods can
produce different estimation results. Which sets of results should you trust? The answer is the FIML and the MI
estimates. The next section provides the justifications of these methods.

ADVANTAGES OF THE FIML METHOD

The following subsections describe the advantages of the FIML method, as compared with other methods for treating
incomplete observations. The FIML method is clearly superior to the ad hoc methods. The FIML and the MI methods
have similar statistical properties, but the availability of the FIML method in PROC CALIS makes it more convenient to
use.

Advantages of the FIML Method Compared with the Ad Hoc Methods

The advantages of the FIML method, compared with the ad hoc methods, are described under the following two
conditions: the kind of missing mechanisms and the underlying distribution of the data.

Following Rubin (1976), three kinds of missing mechanisms are distinguished. When the missingness of a variable
does not depend on the values of any variables (including the variable itself), it is called missing completely at ran-
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dom (MCAR). This is the strictest criterion for random missingness. This definition also matches the common-sense
definition for random missingness. When the missingness of a variable depends on the values of other variables but
does not depend on its own values, it is called missing at random (MAR). Hence, when the data are MCAR, they are
automatically MAR—a less stringent criterion for random missingness. When the missingness of variable does depend
on its own values, it is called missing not at random (MNAR). Consider an example in which blood pressure of patients
is measured. Patients in different age groups might have different degrees of missingness because they might have
different levels of health awareness. The younger groups might tend to miss more appointments for measuring blood
pressure than the older groups. In this case, the missingness of the blood pressure measurements depends on the
age. This missingness is still MAR if the missingness does not depend on the actual blood pressure of the patients.
However, if patients who have normal blood pressure levels tend to ignore their blood pressure appointments more than
the patients with either high or low blood pressure, then the missingness of the blood pressure measurement depends
on the blood pressure level itself. Hence, the data is MNAR in this situation. Finally, if the missingness of the blood
pressure measurement does not depend on the blood pressure value itself or any other variable values, it is MCAR.

Assume that the data are multivariate-normally distributed. Under MCAR and MAR, the FIML method for treating
incomplete observations is consistent and efficient. Consistency refers to the fact that the FIML estimates converge
to the true values probabilistically when the sample size becomes large. Efficiency refers to the fact that the FIML
estimates attain the minimum variance property asymptotically. In contrast, the PD and LD estimates are consistent but
not efficient under MCAR. Under MAR, the PD and LD estimates are not consistent and can be biased (Arbuckle 1996).
The mean imputation method does not yield consistent estimates, and its standard error estimates are negatively
biased. Simulation studies illustrate these results. For example, Enders and Bandalos (2001) conduct a simulation
study about the relative performance of the FIML estimation in structural equation models. They compare the statistical
behavior of the FIML method with the LD, PD, and SRPI (which applies a single imputation) methods. Their simulation
results indicate that the FIML estimation is superior to all those ad hoc methods for treating incomplete observations in
all conditions studied. The FIML estimates are unbiased and more efficient than the ad hoc methods. In addition, the
FIML estimation produces the lowest proportion of convergence failures during optimization.

What happens if the data are not multivariate normal? Is the FIML method still better than the ad hoc methods?
To answer this, Enders (2001) carries out another simulation study to compare the statistical behavior of the FIML
method with the LD, PD, and mean imputation methods under nonnormal situations. His simulation results indicate that
under MCAR and MAR, the FIML estimates involve less bias and are generally more efficient than those of the ad hoc
methods.

Therefore, the relative statistical advantages of using the FIML method, compared with the ad hoc methods such as the
LD, PD, and mean imputation methods, are widely recognized under the multivariate normal distribution. Even under
nonnormal distributions, the FIML method has been shown to be superior to the ad hoc methods for treating incomplete
observations.

Advantages and Disadvantages of the FIML Method Compared with the MI Method

The FIML method has the following advantages over the MI method:

� The FIML method involves only a single run of the analysis with the original sample. It is computationally more
efficient than the MI method, which must fit multiple imputed samples.

� Given the data set, the FIML method always produces the same estimation results for fitting the same model. But
the MI method might yield different estimation results, which depend on the random number generation algorithm
and the seed of the random number sequence that is used in generating imputed values.

� In practice, the FIML estimates are slightly more efficient (that is, with smaller variance) than the estimates
obtained from the MI method. The MI method loses efficiency because it has to generate random imputed values
for the missing data (Schafer and Olsen 1998). However, with reasonably large sample sizes and large enough
multiple imputations in MI, the FIML and MI methods should lead to essentially the same results (Schafer and
Olsen 1998).

� For testing model fit, the FIML method can perform the likelihood ratio test easily and directly. Testing model fit
with the MI method is much more complicated.

The MI method has the following advantages over the FIML method:

� The MI method is more general than the FIML method. Once the MI method is implemented, you can apply it to
any data set, regardless of the models being fitted later on. The FIML method is model-specific, and it must be
implemented separately for different types of models.
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� The MI method can improve estimation by adding variables that are relevant to the missing data in the imputation
stage (see Collins, Schafer, and Kam (2001) and the references therein). Adding variables that are relevant to
the missing data in the FIML method is more difficult to achieve in general. Graham (2003) proposes a strategy
in the field of SEM.

Because of the relative advantages of the FIML method and its availability in the CALIS procedure, the FIML method
should be the method of choice for treating incomplete observations in structural equation and related models. The
FIML method is clearly superior to all ad hoc methods. It also has the same or better statistical properties than the MI
method. Although the FIML method is not as general a statistical tool as the MI method, the FIML method implemented
in PROC CALIS already supports quite a large class of statistical models. Finally, with respect to testing model fit, the
FIML method might be the only handy choice for practical users.

MULTIPLE REGRESSION EXAMPLE

This section illustrates the use of the FIML method of PROC CALIS for estimating parameters in multiple regression
analysis. Again, the data set miss1 is used.

Suppose you want to regress variable x1 on variables x3–x5. You can use the following statements to specify the
regression model:

proc reg data=miss1;
model x1=x3-x5;
run;

Output 7 shows the number of observations read and used in the regression analysis. There are five observations with
missing values, and only seven observations are used in the analysis. Seven is only slightly more than a half of the
original sample size. So, you can expect that the listwise deletion (LD) in the regression analysis loses a lot of valuable
information in the incomplete observations.

Output 7 Number of Observations Read and Used in PROC REG

Number of Observations Read 12
Number of Observations Used 7
Number of Observations with Missing Values 5

Output 7 shows the least squares estimates of PROC REG. These least squares estimates are also maximum likelihood
(ML) estimates for the regression model. If you look at the t values of these parameter estimates, none of them are
significant at the 0:05 ˛-level.

Output 8 Parameter Estimates by the REG Procedure

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 3.96408 2.06750 1.92 0.1510
x3 1 0.11810 0.30423 0.39 0.7238
x4 1 -1.12738 0.36139 -3.12 0.0525
x5 1 0.51679 0.26009 1.99 0.1411

To exploit the information of the incomplete observations, you can use the FIML method of PROC CALIS to specify the
same regression model, as shown in the following statements:

proc calis data=miss1 method=fiml;
path x1 <--- x3-x5;
run;

PROC CALIS does not use the same syntax as PROC REG uses to specify regression models. In fact, PROC CALIS
has many different modeling languages for specifying various types of models, including path, factor-analysis, and
regression models. The PATH statement in the current example specifies that there are three paths from variables x3–
x5 to variable x1. This essentially states that x3–x5 predict x1, which is equivalent to the regression model specified with
the REG procedure. What is different in the PROC CALIS specification is the use of METHOD=FIML, which ensures
that all incomplete observations are analyzed together with the complete observations. The regression coefficient
estimates by PROC CALIS are shown in Output 9.
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Output 9 Parameter Estimates by the FIML Method of the CALIS Procedure

PATH List

Standard
--------Path-------- Parameter Estimate Error t Value

x1 <--- x3 _Parm1 0.28263 0.16034 1.76272
x1 <--- x4 _Parm2 -0.83912 0.14458 -5.80382
x1 <--- x5 _Parm3 0.36316 0.14565 2.49345

Output 9 shows that the estimates by the FIML method are different from those of the regression analysis with the
listwise deletion (LD) of the incomplete observations. For example, the regression coefficient of x3 on x1 is 0:118
with the regression analysis, as shown in Output 8. However, with the incomplete observations included in the FIML
method, this estimate is 0:283, as shown in Output 9. Because the FIML method has been shown to be superior to the
LD method, this example illustrates that ignoring the incomplete observations (as with the LD treatment of PROC REG)
might skew the estimation.

Another notable difference between the results in Output 8 and Output 9 is the magnitude of the estimated standard
errors. The FIML method shows considerably smaller estimated standard errors for all estimates. In fact, it has been
well-documented that the FIML estimates are more efficient than the ad hoc methods for treating incomplete obser-
vations. This example illustrates this point numerically. The statistical consequence is that the FIML estimates have
more precise (narrower) confidence intervals and more statistical power in significance tests. In the field of SEM, the
significance of a t value is referenced to the z-distribution. Therefore, an estimate is significantly different from zero at
the 0:05 ˛-level if its corresponding absolute t value is greater than 1:96. Output 9 shows that the effects of x3 and x4
on x1 are statistically significant.

Output 10 shows the intercept estimate (for x1) by the FIML method of PROC CALIS, along with the estimates of the
variable means for x3–x5. The intercept estimate by PROC CALIS, 3:132, is quite different from that of PROC REG,
which is 3:964. Also, the FIML estimation has a much smaller estimated standard error (1:230) for the intercept estimate
than that of PROC REG, which is 2:068.

Output 10 Intercept and Mean Estimates by the FIML Method of the CALIS Procedure

Means and Intercepts

Standard
Type Variable Parameter Estimate Error t Value

Intercept x1 _Add08 3.13153 1.23029 2.54536
Mean x3 _Add09 4.11466 0.58428 7.04227

x4 _Add10 3.20836 0.64712 4.95788
x5 _Add11 6.15386 0.69481 8.85690

In summary, this example shows that estimation results in regression analysis could be quite different if the incomplete
observations are not included in the analysis. Although PROC CALIS is not designed mainly for regression analysis,
you can still use it to fit regression models with the FIML estimation, which treats the incomplete observations much
more efficiently than the listwise deletion method applied automatically with the regression analysis.

DATA COVERAGES AND ANALYSIS OF MISSING PATTERNS

In addition to the FIML estimation with the specification of the METHOD=FIML (or METHOD=LSFIML) option, PROC
CALIS outputs two groups of descriptive analyses about the incomplete observations. These descriptive analyses are
available only in SAS/STAT 9.3 (or later).

� The first group of descriptive analyses shows the proportion coverage statistics for the means and covariances.
The proportion coverage statistic is similar to the “available-case” concept in the pairwise deletion (PD) method. It
measures the proportion of observations available to compute a particular sample moment (mean or covariance).
For a sample mean, the proportion coverage shows the proportion of observations with nonmissing values in the
corresponding variable. For a sample covariance, the proportion coverage shows the proportion of observations
with nonmissing values in both of the variables involved. The proportion coverage statistics are useful for gauging
the relative severity of missingness in the sample moments. They help locate the variables or sample moments
that have the most serious missing problems or have the least information.
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� The second group of descriptive analyses shows the dominant missing patterns and their means. The dominant
missing patterns are those missing patterns that account for the majority of the incomplete observations in the
data set. PROC CALIS ranks these dominant missing patterns in the output. The means of these dominant
patterns are computed so that you can compare them with the means of the complete observations. PROC
CALIS does not show all missing patterns in the output because the number of distinct missing patterns could
be quite large in practical applications. However, you can control the amount of missing pattern output by some
options. The section “PROC CALIS OPTIONS RELATED TO FIML ESTIMATION” on page 17 covers the details
of these options and controls.

The next section illustrates the uses of these descriptive analyses in the FIML estimation of a structural equation model.

STRUCTURAL EQUATION MODEL EXAMPLE WITH INCOMPLETE OBSERVATIONS

This section applies the full information maximum likelihood (FIML) estimation to a structural equation model with latent
variables. The path diagram shown in Output 1 is inspired by Marjoribanks (1974), but it is not intended to represent any
theoretical model of Marjoribanks. The data in the current illustration are fictitious and contain incomplete observations,
so no part of the current analysis is meant to be comparable to the results of Marjoribanks. The purpose here is to
illustrate the FIML estimation by PROC CALIS in an interesting substantive context.

Figure 1 Factors Affecting Mental Abilities: Path Diagram

Social

Status

1

S1 S2 S3

Parental

Encouragement

1

P1 P2 P3

Achievement

Motivation

1

A1 A2 A3

Mental

Ability

1

M1 M2 M3

As expressed as a path diagram in Figure 1, a researcher proposes a theory about how Social Status predicts Mental
Ability in a linear “causal” sequence of effects: Social Status predicts Parental Encouragement, which predicts Achieve-
ment Motivation, which predicts Mental Ability. All four variables are latent variables in the model. They are theoretical
constructs that are not directly observed, but are reflected by some observed variables (or indicators). For example,
S1–S3 are observed indicators for Social Status. S1 could be a variable that indicates the annual family salary class
of an individual, with 7 being the highest salary class and 1 being the lowest. M1–M3 could be rating scales of an indi-
vidual on three different mental tests. Again, seven-point scales are used for these observed variables. (This example
assumes the seven-point rating scales for all observed variables only for the simplicity in presentation. The observed
variables could be measured on ordinal, interval, or ratio scales.) The whole path diagram shown in Figure 1 forms the
structural equation model.

In Figure 1, some paths are labeled with 1. This means that the corresponding path coefficients or effects are fixed
to 1, which would not be changed during the estimation. For example, the effect of Social Status on S1 is fixed to
1. Such a fixed coefficient is necessary to identify the scale of the latent variable Social Status. Similarly, each latent
construct in Figure 1 has one fixed path with one of its observed indicators. Due to the limited space, this paper cannot
introduce the structural equation modeling more thoroughly. For more information, see the classic textbook by Bollen
(1989) about the basics of structural equation modeling.

You can easily transcribe the path diagram in Figure 1 into the following specification by using the PATH modeling
language of the CALIS procedure, as shown in the following statements:

proc calis data=miss3 method=fiml;
path

S1-S3 <--- SocialStatus = 1,
P1-P3 <--- ParentalEncouragement = 1,
A1-A3 <--- AchievementMotivation = 1,
M1-M3 <--- MentalAbility = 1,
SocialStatus ---> ParentalEncouragement,
ParentalEncouragement ---> AchievementMotivation,
AchievementMotivation ---> MentalAbility;

run;

In the PROC CALIS statement, you specify the METHOD=FIML option so that the incomplete observations are ana-
lyzed together with the complete data. In the PATH statement, you specify the paths shown in Figure 1. The first four
entries specify the measurement model for the theoretical constructs. You use the multiple-path specification syntax
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for the measurement model. For example, the first path entry means that SocialStatus has three paths to S1, S2, and
S3. The first path to S1 has a fixed coefficient 1, while the other two paths have coefficients or effects to be freely
estimated. The last three entries in the PATH statement represent the structural model, which describes the functional
relationships between the latent variables.

Output 11 shows some general modeling information obtained from the PROC CALIS output. The first table shows that
there are 200 data records in the miss3 data set, but only 100 are complete observations. With METHOD=FIML, the
100 incomplete observations are also analyzed together with the complete observations. The second table classifies
the variables according to whether they are endogenous or exogenous and whether they are manifest (observed) or
latent (unobserved).

Output 11 Basic Modeling Information with the FIML Estimation for the Miss3 Data Set

Modeling Information

Data Set WORK.MISS3
N Records Read 200
N Complete Records 100
N Incomplete Records 100
N Complete Obs 100
N Incomplete Obs 100
Model Type PATH
Analysis Means and Covariances

Variables in the Model

Endogenous Manifest A1 A2 A3 M1 M2 M3 P1 P2 P3 S1 S2
S3

Latent AchievementMotivation MentalAbility
ParentalEncouragement

Exogenous Manifest
Latent SocialStatus

Number of Endogenous Variables = 15
Number of Exogenous Variables = 1

Output 12 shows the proportions of data present for computing the sample means and covariances. The entries in the
table are called proportion coverages. The diagonal of the matrix shows the proportion coverages of the means or the
proportion coverages of the variables. The off-diagonal of the matrix shows the proportion coverages of the covariances
or the joint proportion coverages of the variable-pairs. For example, the (1,1) entry shows that 92:5% of observations
have nonmissing values in variable S1 or shows that 92:5% of observations are used for computing the sample mean
of S1. The (2,1) entry shows that 89% of observations have nonmissing values in variables S1 and S2 or shows that
89% of observations are used for computing the covariance between S1 and S2. The average proportion coverages of
means and covariances are shown at the bottom of Output 12. They are 88:4% and 82:4%, respectively. Overall, the
missing data problem does not seem to be very serious.

Output 12 Proportion Coverages

Proportions of Data Present for Means (Diagonal) and Covariances (Off-Diagonal)

S1 S2 S3 M1 M2 M3 A1 A2 A3 P1 P2 P3

S1 0.9250
S2 0.8900 0.9250
S3 0.8800 0.8900 0.9100
M1 0.8750 0.8800 0.8800 0.8900
M2 0.8950 0.8950 0.8800 0.8750 0.9150
M3 0.9000 0.8950 0.8850 0.8850 0.8900 0.9200
A1 0.8900 0.8850 0.8850 0.8800 0.8900 0.8850 0.9200
A2 0.8950 0.8800 0.8750 0.8750 0.8850 0.8850 0.8850 0.9000
A3 0.8900 0.8900 0.8800 0.8800 0.8800 0.8800 0.8850 0.8800 0.9100
P1 0.5150 0.5100 0.5000 0.5050 0.5100 0.5100 0.5150 0.5100 0.5150 0.5350
P2 0.8900 0.9100 0.8900 0.8800 0.9050 0.8850 0.9000 0.8900 0.8950 0.5150 0.9350
P3 0.8850 0.8850 0.8900 0.8800 0.8800 0.8900 0.8900 0.8850 0.8950 0.5100 0.8900 0.9200

Average Proportion Coverage of Means 0.883750
Average Proportion Coverage of Covariances 0.824015

In order to locate the smallest coverages of the sample moments, Output 13 orders the smallest coverages for the
means and for the covariances. The first table shows that variable P1 had only 53:5% of data coverage, while all other
variables have at least 89% of data coverage. The second table shows that the covariance coverages that involve P1
and many other variables fall to about 50%. Therefore, you might want to take a closer look at variable P1 to understand
why it has such a high proportion of missing values.
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Output 13 Smallest Coverages

Rank Order of the 6 Smallest Variable (Mean) Coverages

Variable Coverage

P1 0.5350
M1 0.8900
A2 0.9000
S3 0.9100
A3 0.9100
M2 0.9150

Rank Order of the 10 Smallest Covariance Coverages

Var1 Var2 Coverage

P1 S3 0.5000
P1 M1 0.5050
P1 S2 0.5100
P1 M2 0.5100
P1 M3 0.5100
P1 A2 0.5100
P3 P1 0.5100
P1 S1 0.5150
P1 A1 0.5150
P1 A3 0.5150

Output 14 shows the dominant missing patterns in the data set and their means. The first table in Output 14 shows that
the most dominant missing pattern “xxxxxxxxx.xx” has one missing variable, which is denoted by a dot in the pattern.
About 38% of the observations (N=75) have this missing pattern. All other missing patterns shown in the table are
relatively trivial because each has only one observation. Notice that for the current data, the total number of distinct
missing patterns is 26, as shown in the title of the first table. However, PROC CALIS shows only the five most dominant
missing patterns. Showing more missing patterns (each with a frequency of 1) for the current data set would not add to
the understanding of the current results. See the next section for the details about how to control the amount of output
for displaying missing patterns.

Output 14 Missing Patterns and Their Mean Profiles

Rank Order of the 5 Most Frequent Missing Patterns
Total Number of Distinct Patterns with Missing Values = 26

NVar
Pattern Miss Freq Proportion Cumulative

1 xxxxxxxxx.xx 1 75 0.3750 0.3750
2 x...xx..x..x 7 1 0.0050 0.3800
3 .x.x....xxx. 7 1 0.0050 0.3850
4 ...x.xx..... 9 1 0.0050 0.3900
5 ..xx.x.....x 8 1 0.0050 0.3950

NOTE: Nonmissing Pattern Proportion = 0.5000 (N=100)

Means of the Nonmissing and the Most Frequent Missing Patterns

----------------------Missing Pattern---------------------
Nonmissing 1 2 3 4 5

Variable (N=100) (N=75) (N=1) (N=1) (N=1) (N=1)

S1 4.04000 3.58667 4.00000 . . .
S2 3.91000 3.65333 . 3.00000 . .
S3 4.00000 3.52000 . . . 7.00000
M1 4.02000 3.56000 . 1.00000 2.00000 6.00000
M2 4.04000 3.56000 6.00000 . . .
M3 4.01000 3.42667 3.00000 . 4.00000 6.00000
A1 4.18000 3.66667 . . 4.00000 .
A2 4.29000 3.50667 . . . .
A3 4.30000 3.46667 4.00000 2.00000 . .
P1 4.08000 . . 3.00000 . .
P2 4.15000 3.73333 . 3.00000 . .
P3 4.06000 3.70667 6.00000 . . 6.00000

The second table of Output 14 shows the means of the most dominant missing patterns and the complete data (that is,
the nonmissing pattern). You can use this table to locate the missing variables in the missing patterns. For example,
P1 is a missing variable in the most dominant missing pattern because its mean is represented by a dot. Recall that P1
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has also been identified as the most troublesome variable in the data coverage analysis. What could have happened to
this variable? Are there any implications for practical research that you can draw from these results for data coverage
and missing patterns? The answer is yes, but it depends on the substantive context of your research.

To complete the argument, suppose P1 is a rating variable that indicates whether an individual receives consistent
parental encouragement. The item might be phrased as: “Both of my parents set the same goals for me to achieve.”
Respondents who live with a single parent might not give responses to this item. Although the missingness of this
variable seems to be determined by some other variables, it does not mean that the nature of the missingness of
this variable must be MNAR. If these respondents had both parents living with them, would their missingness in this
variable be dependent on their potential responses to the item? If yes, then the missingness is MNAR. Otherwise, it is
not MNAR. Unfortunately, there seems to be no way to answer such a hypothetical question. In any case, the dominant
missing pattern here exposes the problematic item, which you might want to revise in future research so as to eliminate
the ambiguity.

Another notable observation from the missing pattern analysis is that all the variable means for the dominant missing
pattern are consistently lower than those of the complete observations of the nonmissing pattern. This suggests that
the observations with such a dominant missing pattern might have some peculiarity that warrants a separate analysis.
Such a possibility might be explored in practical research.

Output 15 shows the fit summary table. PROC CALIS shows all the available fit indices by default. Although it is not
done here, you can control the amount of fit indices to display in this table by using the FITINDEX statement. To test
whether the proposed structural equation model is significantly worse than the saturated model for the data, you can
use the chi-square model fit statistic, which is defined as the �2 multiple of the difference between the log-likelihood
values under the theoretical model and the saturated model. As shown in Output 15, the chi-square model fit statistic is
58:6765 (df D 51, p D 0:22). Hence, the theoretical model fits as well as the saturated model and is not rejected on the
ground of the likelihood ratio test. In SEM, model fit is often judged also by other fit indices. Some of the recommended
indices in the field of SEM are examined here. The root mean square error of approximation (RMSEA) is 0:0274, and
the standardized root mean square residual (SRMSR) is 0:0403. Both of these fit indices show very good model fit. The
CFI (Bentler comparative fit index) is 0:9958, which also indicates an excellent model fit.

Output 15 Fit Summary with the FIML Estimation for the miss3 Data Set

Fit Summary

Modeling Info N Complete Observations 100
N Incomplete Observations 100
N Variables 12
N Moments 90
N Parameters 39
N Active Constraints 0
Saturated Model Estimation FIML
Saturated Model Function Value 35.5034
Saturated Model -2 Log-Likelihood 7100.6750
Baseline Model Estimation Converged
Baseline Model Function Value 44.8799
Baseline Model -2 Log-Likelihood 8975.9700
Baseline Model Chi-Square 1875.2950
Baseline Model Chi-Square DF 66
Pr > Baseline Model Chi-Square <.0001

Absolute Index Fit Function 35.7968
-2 Log-Likelihood 7159.3515
Chi-Square 58.6765
Chi-Square DF 51
Pr > Chi-Square 0.2147
Z-Test of Wilson & Hilferty 0.7909
Hoelter Critical N 234
Root Mean Square Residual (RMSR) 0.1622
Standardized RMSR (SRMSR) 0.0403
Goodness of Fit Index (GFI) 0.9619

Parsimony Index Adjusted GFI (AGFI) 0.9328
Parsimonious GFI 0.7433
RMSEA Estimate 0.0274
RMSEA Lower 90% Confidence Limit 0.0000
RMSEA Upper 90% Confidence Limit 0.0550
Probability of Close Fit 0.9019
Akaike Information Criterion 7237.3515
Bozdogan CAIC 7404.9859
Schwarz Bayesian Criterion 7365.9859
McDonald Centrality 0.9810

Incremental Index Bentler Comparative Fit Index 0.9958
Bentler-Bonett NFI 0.2024
Bentler-Bonett Non-normed Index 0.9945
Bollen Normed Index Rho1 0.9595
Bollen Non-normed Index Delta2 0.9958
James et al. Parsimonious NFI 0.7485
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Output 16 shows the estimates of the path effects and their significance. All estimates are significant at the 0:05 ˛-level
because all their corresponding t values are greater than 1:96 (the critical value based on the z-distribution).

Output 16 Estimated Path Coefficients with the FIML Estimation for the miss3 Data Set

PATH List

Standard
----------------------Path---------------------- Parameter Estimate Error t Value

S1 <--- SocialStatus 1.00000
S2 <--- SocialStatus _Parm01 0.97633 0.05143 18.98353
S3 <--- SocialStatus _Parm02 0.93340 0.05879 15.87763
P1 <--- ParentalEncouragement 1.00000
P2 <--- ParentalEncouragement _Parm03 1.02929 0.08125 12.66804
P3 <--- ParentalEncouragement _Parm04 1.01757 0.08056 12.63135
A1 <--- AchievementMotivation 1.00000
A2 <--- AchievementMotivation _Parm05 1.06612 0.07252 14.70005
A3 <--- AchievementMotivation _Parm06 1.04898 0.06795 15.43673
M1 <--- MentalAbility 1.00000
M2 <--- MentalAbility _Parm07 1.02426 0.06116 16.74674
M3 <--- MentalAbility _Parm08 1.04717 0.06530 16.03538
SocialStatus ---> ParentalEncouragement _Parm09 0.70886 0.06736 10.52383
ParentalEncouragement ---> AchievementMotivation _Parm10 0.77686 0.07893 9.84259
AchievementMotivation ---> MentalAbility _Parm11 0.86009 0.07966 10.79700

What results would you get if you use instead the regular ML method with listwise deletion of the incomplete observa-
tions? You can obtain the regular ML results by replacing the METHOD=FIML option with the METHOD=ML option in
the preceding PROC CALIS specification. Output 17 shows some selected fit summary results with the METHOD=ML
option.

Output 17 Fit Summary for the ML Estimation with Listwise Deletion for the miss3 Data Set

Fit Summary

Chi-Square 70.0624
Chi-Square DF 51
Pr > Chi-Square 0.0394
Standardized RMSR (SRMSR) 0.0647
RMSEA Estimate 0.0614
Bentler Comparative Fit Index 0.9831

The chi-square model fit statistic is 70:0624 (df D 51, p D 0:0394). The theoretical model is rejected at the 0:05 ˛-level.
The root mean square error of approximation (RMSEA) is 0:0614, and the standardized root mean square residual
(SRMSR) is 0:0647. Both indices indicate only a marginally acceptable model fit. The CFI is 0:9831, which still shows
an excellent model fit, but not as good as the analysis with the FIML estimation.

In summary, the moral here is not that you get better model fit with the FIML estimation, but that with the FIML estimation
you can use the most information from the incomplete observations to make a more sound statistical decision. It just
happens in this example that the FIML estimation is able to obtain more supporting information from the incomplete
observations to substantiate the theoretical model. In addition, analyses of the data coverage and the missing patterns,
which accompany with the FIML estimation of PROC CALIS, offer useful insights about the data.

PROC CALIS OPTIONS RELATED TO FIML ESTIMATION

This section describes in detail the options and controls related to the FIML method of PROC CALIS and is provided
as a reference to make this paper self-contained. You might skip this section in the first reading.

Invoking the FIML Estimation

You can use either the METHOD=FIML or METHOD=LSFIML option in the PROC CALIS statement to invoke the
FIML estimation. With METHOD=LSFIML, PROC CALIS first conducts the unweighted least square (ULS) estimation
based on the complete observations only. The ULS parameter estimates are then used as the initial estimates for the
subsequent FIML estimation. With METHOD=FIML, PROC CALIS conducts the FIML estimation only. Data coverages
for the sample moments and the missing pattern analysis are displayed automatically with the specification of either
the METHOD=FIML or METHOD=LSFIML option.
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If your data set does not contain any missing values in the analysis model, the FIML estimation is essentially an ML
analysis on the complete data. In this case, using the FIML method would have the same estimation results as using
the ML method with the VARDEF=N option. The VARDEF=N option is required to make the ML method use N as
the variance divisor (instead of the default N � 1), which matches the variance divisor of the FIML estimation. Even
without the VARDEF=N option, using the FIML method would have almost the same estimation results as using the ML
method for analysis with complete data only. Because the FIML estimation requires much more computing resource
than the regular ML estimation, it is recommended that you do not use the FIML method when the data set contains
only complete observations for analysis.

Proportion Coverages of the Variables and Sample Moments

The proportion data coverage of a particular sample moment (mean or covariance) is the proportion of the observations
that have nonmissing values for computing that sample moment. PROC CALIS displays these proportion coverages
in the ODS output table called MeanCovCoverage, and displays the average coverages of the means and covariances
in the ODS output table called AveCoverage. You can use these results to gauge the severity of missingness in the
sample moments. A small coverage for a moment means that it suffers from the relative lack of information.

To locate the sample moments that suffer the highest rates of missing values, PROC CALIS ranks the smallest cover-
ages for the sample moments in two output tables. The RankVariableCoverage table shows which variables or variable
means have the smallest data coverages (the largest proportions of missing values). The RankCovCoverage table
shows you which variable pairs or their corresponding covariances have the smallest joint data coverages (the largest
proportions of missing values in both variables). These two tables highlight the sample moments that have the most
serious missing value problems.

Table 3 summarizes the ODS tables concerning the proportion data coverages of the sample moments.

Table 3 ODS Tables for Displaying the Proportion Data Coverages

ODS Table Name Description

AveCoverage Average proportion coverages of means (variances) and covariances
MeanCovCoverage Proportions of data present for means (variances) and covariances
RankCovCoverage Rank order of the covariance coverages
RankVariableCoverage Rank order of the proportion coverages of the variables

Analysis of Missing Patterns

Some missing patterns in the data set might occur more frequently than the others. The dominant missing patterns are
those missing patterns that account for the highest proportions of the incomplete observations. PROC CALIS outputs
two tables that enable you to examine these dominant missing patterns. The RankMissPatterns table displays the most
dominant missing patterns in order. The MissPatternsMeans table displays the means for the nonmissing pattern and
for the dominant missing patterns. By default, PROC CALIS displays up to 10 of the most dominant missing patterns.
You can change this default behavior by using some options, which are described in the next section.

Table 4 summarizes the ODS tables for the analysis of the missing patterns.

Table 4 ODS Tables for Displaying the Missing Patterns

ODS Table Name Description

MissPatternsMeans Means of the nonmissing and the most dominant missing patterns
RankMissPatterns Rank order of the most dominant missing patterns
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Controlling the Number of Missing Patterns to Display

The number of missing patterns can be quite large in data sets with a lot of variables. To make the analysis output
for the missing patterns concise and interpretable, PROC CALIS prints only the results for the most dominant missing
patterns in the output (although all incomplete observations are still used in model estimation).

The most dominant (frequent) missing patterns are those patterns that have the largest proportions of incomplete
observations. PROC CALIS displays the k most dominant missing patterns in the analysis output for the missing
patterns. The value of k is between a minimum number (min) and a maximum number (max). The maximum number
max is 10 by default. The minimum number min is the smallest among 5, the actual number of missing patterns,
and max, which can be overridden by the MAXMISSPAT= option (by using any value between 1 and 9,999). After the
minimum number of the most dominant missing patterns are included in the output, PROC CALIS continues to include
the next most dominant missing patterns if each of these missing patterns can account for at least 5% of the total
number of observations, until the maximum number of missing patterns to display (max) is reached. The 5% required
proportion for a missing pattern to be displayed is referred to as the proportion threshold, which is set to 0:05 by default
and can be overridden by the TMISSPAT= option.

To summarize, you can specify the following options to control the number of missing patterns in the analysis output:

MAXMISSPAT=max
specifies the maximum number of missing patterns to be displayed, where max is between 1 and 9,999. The
default for max is 10 or the actual number of missing patterns in the data, whichever is smaller.

NOMISSPAT
suppresses the display of the missing pattern analysis. By default, the missing pattern analysis is displayed.

TMISSPAT=min
specifies the data proportion threshold for displaying the missing patterns, where min is between 0 and 1. The
default for min is 0.05. This is the criterion for including additional missing patterns in the analysis output after
the minimum number of the most dominant missing patterns have been included.

With a combination of these options, you can easily control the amount of missing patterns in the output. For example,
if you do not want to analyze any missing patterns, use the NOMISSPAT option. If you want to include a very large
number of missing patterns (up to 9,999), you can use a large number for the MAXMISSPAT= option (for example,
MAXMISSPAT=9999) and a very small number for the TMISSPAT= option (for example, TMISSPAT=0). Finally, if you
want to include up to 25 missing patterns such that each additional missing pattern accounts for at least 4% of the total
number of observations (after the minimum number of patterns have been included), you can set TMISSPAT=0.04 and
MAXMISSPAT=25.

SOME LIMITATIONS OF THE FIML METHOD

Following are some limitations of the FIML method:

� The FIML method cannot treat observations with nonrandom missing values—it is not designed to treat all kinds
of missingness. In general, nonrandom missingness can be treated only within the formulation of the statistical
models themselves. The FIML method is a principled statistical method only for estimating the model parameters;
it is not a statistical model itself.

� The FIML method is computationally much more expensive than the regular ML method with the listwise deletion
(LD) method for structural equation modeling. This is because the FIML method must evaluate all the individual
likelihood functions in each iteration during the optimization, while the ML method evaluates only one likelihood
function based on the sample moments in an iteration. If you have a very large data set with a lot of variables
(say 100,000 observations and 200 variables), the computing resources might become so strained that the FIML
method cannot be completed. If the listwise deletion still leaves you with a relatively large number of observations
(say, several thousands), the regular ML method could be a better choice.

� If the proportion of incomplete observations for fitting a structural equation model is large (for example, above
85%) and the number of complete observations is small (say, under 15), the authors’ experience is that the
FIML method tends to have problems obtaining convergent solutions in optimization. However, the convergence
problem might also happen to other incomplete data methods. Whether this limitation is more serious in the FIML
estimation than in other methods needs to be studied more systematically.
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CONCLUSION

With the availability of the FIML method in PROC CALIS, incomplete observations with random missing values (MCAR
or MAR) can now be treated appropriately in fitting structural equation and related models. The main advantages
of the FIML method are the consistency and efficiency of the maximum likelihood estimates under the multivariate
normal distribution. Even if the multivariate normal assumption is violated, the FIML method is still much better than
the ad hoc methods for treating incomplete observations. The FIML method in PROC CALIS is also more convenient
to use than the multiple imputation method for treating incomplete observations, even though the two methods have
similar statistical properties. Finally, the data coverage and missing pattern analyses of the CALIS procedure provide
useful tools for gauging the seriousness of missingness and locating the dominant missing patterns, which in turn help
researchers obtain more insights about their data.
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