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Abstract

Categorical data analysis remains a substantial tool in the practice of statistics, and its techniques continue to evolve
with time. This paper reviews some of the basic tenets of categorical data analysis today and describes the newer
techniques that have become common practice. The use of exact methods has expanded, including additional assess-
ments of statistical hypotheses, conditional logistic regression, and Poisson regression. Bayesian methods are now
available for logistic regression and Poisson regression, and graphics are a regular component of many analyses.

This paper describes recent techniques and illustrates them with examples that use SAS/STAT® software.

Introduction

The practice of statistics, like any discipline, evolves over time, and categorical data analysis is no different. Method-
ological and computing advances give rise to new and better ways of analyzing data in which the responses are
dichotomous or counts. Sometimes the statistical approach is the same, such as in examining the difference of bi-
nomial proportions and its confidence interval, but newer methodology makes the estimates much improved. Other
times, the approach itself is quite different, such as the adoption of Bayesian techniques in place of the more traditional
frequentist approach in statistical modeling.

This paper is the answer to the question: What are some of the differences in how categorical data analysis is performed
now compared to 10 or 15 years ago? Five fairly different areas are covered: the difference of binomial proportions,
Poisson regression and incidence density estimates, conditional logistic regression, nonparametric analysis of covari-
ance, and Bayesian methods.

To review, categorical responses include dichotomous outcomes and discrete counts as well as ordinal outcomes. For
example:

e dichotomous: favorable or unfavorable response to a treatment in a clinical trial

e discrete: number of time periods with colds

e ordinal: good, fair, or poor response to a medication for rheumatoid arthritis

When the explanatory variables are discrete, the data are often displayed in a contingency table. The simplest case
would be a 2 x 2 display as illustrated in Table 1:

Table 1 Respiratory Treatment Outcomes

Treatment | Favorable Unfavorable | Total
Test 10 2 12
Control 2 4 6
Total 12 6 18

Categorical data analysis strategies generally take one of two forms:

e hypothesis testing with randomization methods to assess association

e statistical modeling techniques that seek to describe the nature of the association, using maximum likelihood,
Bayesian, or weighted least squares modeling methods

As an illustration of the first strategy, consider a multi-center study in which the null hypothesis is whether there is
no association between treatment and outcome, controlling for the effect of center. The null hypothesis implies the
hypergeometric distribution, and that serves as the basis for exact tests or expected values and covariance structure
for approximate tests. As an illustration of the second strategy, consider performing logistic regression via maximum
likelihood to assess the influence of that treatment on the outcome, adjusting for center as well as other covariates.

The techniques described in the following sections cover both types of strategies.
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Difference of Binomial Proportions

While we are bombarded with news about the contemporary data flood, with megabytes and gigabytes and terabytes,
oh my, the simple 2 x 2 table remains a stalwart of categorical data analysis, although the methods for analyzing it have
been refined over time. Analyzing the data presented in Table 1 addresses the question of whether patients receiving
a treatment are more likely to have a favorable outcome than those who do not. The rows in the table might represent
simple random samples from two groups that produce two independent binomial distributions for a binary response. Or,
they might represent randomization of patients to two equivalent treatments, resulting in the hypergeometric distribution.

With adequate sample size, say a total count of greater than 20, and individual cell counts of at least 5 in each
cell, asymptotically based association statistics, such as the continuity-corrected Pearson chi-square, are appropriate
statistics to assess the association at the 0.05 significance level. For the data in Table 1, Fisher’s exact test is more
suitable since the overall sample size is 18 and 3 cell counts are less than 5. The p-value for this test is 0.0573.

You might also be interested in describing the association in the table by comparing the proportion of favorable response
in each treatment group. Consider the following representation of this table:

Table 2 2 x 2 Contingency Table

Favorable Unfavorable | Total | Proportion Favorable
Test ni niz ni+ | p1=n1/ni+
Control no1 nao not | pa2 =na1/nay
Total n41 nyo n

The proportion p; of favorable events in the ith row is defined as n;/n;+. When the groups represent simple random
samples, and the difference d = p; — p, for the proportions p; and p»,

E{pr —p2}=m —m2

The variance is

w1(1 —mp) . w2 (1 — m2)
ni+ na+

Vip1 — p2} =

for which a consistent estimate is

v — p1(1—p1) n p2(1— p2)
d ni+ na4

A 100(1 — )% confidence interval for (71 — ») with continuity correction is written as

1 1 }}
7+7
ni+ na+

where z,/, is the 100(1 —a/2) percentile of the standard normal distribution; this confidence interval is based on Fleiss,
Levin, and Paik (2003). These confidence limits include a continuity adjustment to the Wald asymptotic confidence
limits that adjust for the difference between the normal approximation and the discrete binomial distribution.

1
d+ {Za/Z«/vd + 3

The default Wald asymptotic confidence limits (without the continuity correction) in the FREQ procedure are appropri-
ate for larger sample sizes, say cell counts of at least 12. The continuity-corrected Wald confidence limits are more
appropriate for moderate sample sizes, say cell counts of at least 8.

But the data in Table 1 do not meet these criteria, much as they do not meet the criteria for asymptopic tests that assess
association. So, are there exact methods for determining the confidence interval for the difference of proportions? Yes.
However, methods for computing the exact confidence interval have limitations: for one, they are unconditional exact
tests, not conditional exact tests, like Fisher's exact test, due to the presence of a nuisance parameter. Unconditional
methods proceed by maximizing the p-value over the possible values of the nuisance parameter in order to eliminate
it. In addition, the coverage of the exact confidence interval is not exactly 100 % (1 — &) but is at least 100 * (1 — «). See
Agresti (1992) for more information.



You request the exact unconditional interval based on the raw risk difference with the RISKDIFF option in the EXACT
statement in the FREQ procedure. The interval is produced by inverting two separate one-sided tests where the size of
each test is at most («/2), resulting in a confidence coefficient of at least (1 — «). In addition, beginning with SAS/STAT
9.3, you can request the exact unconditional confidence interval by inverting two separate one-sided tests based on
the score statistic proposed by Farrington and Manning; this has better coverage properties (Chang and Zhang 1999).

However, you can often do better than these exact methods with the Newcombe method (Newcombe 1998). The
Newcombe method uses the quadratic equation method for the confidence interval for each proportion separately and
integrates them to compute the confidence interval for the difference of proportions. You plug in the quadratic solutions
Py, Pr1 and Py,, Pr, to obtain the lower (L) and upper (U) bounds for the confidence interval for the proportion
difference.

L=(p1—p2)— \/(131 —Pr1)?+ (Py2—p2)?and U = (p1 — p2) + \/(PUI —p1)? + (p2 — Pr2)?

A continuity-corrected Newcombe’s method also exists, and it should be considered if the total number of row counts
is less than 10. The continuity correction is made in the computations of the confidence intervals for the binomial
proportions. The Newcombe method can be somewhat conservative. The Appendix contains SAS/IML code that
performs these computations with the continuity correction. In SAS/STAT 9.3, you can request these computations
with new options for the RISKDIFF option in the FREQ procedure. In addition to the Newcombe method, you can also
request the Farrington-Manning method (Farrington and Manning 1990). The Farrington-Manning method generally
does well power-wise but the confidence interval it produces may be too narrow when applied to situations where you
have less than a count of 5 per group.

The following SAS statements create the data set SMALL with the frequencies from Table 1.

data small;
input treat $ outcome $ count @@ ;
datalines;
Test Favorable 10 Test Unfavorable 2
Placebo Favorable 2 Placebo Unfavorable 4
The following PROC FREQ statements request the Wald, Newcombe, and Farrington-Manning confidence intervals
for the difference of the favorable proportion for Test and Placebo. The unconditional exact interval based on the
Farrington-Manning score statistic is requested with the RISKDIFF option in the EXACT statement. The CORRECT
option specifies that the continuity correction be applied where possible, and the NORISK option suppresses the rest
of the relative risk difference results.

proc freq order=data;
weight count;
tables treatxoutcome / riskdiff (cl=(wald newcombe fm exact) correct norisks);
exact riskdiff (fmscore);

run;

Figure 1 displays the confidence intervals.

Figure 1 Various Confidence Interval for Difference of Propotions

The FREQ Procedure
Statistics for Table of treat by outcome
Confidence Limits for the Proportion (Risk) Difference

Column 1 (outcome = Favorabl)
Proportion Difference = 0.5000

Type 95% Confidence Limits
Exact (FM Score) -0.0000 0.8433
Farrington-Manning 0.0380 0.9620
Newcombe Score (Corrected) -0.0352 0.8059
Wald (Corrected) -0.0571 1.0000

Note that the corrected Wald-based confidence interval is the widest interval, and it might have boundary issues with the
upper limit of 1. The scored-based exact (unconditional) confidence interval has a relatively wide interval, (—0.0296,
0.8813) as does the interval based on Farrington-Manning scores, (0.0380, 0.9620), which also excludes the value



zero. The score-based exact confidence interval has a narrower interval of (0.000, 0.8433) but comes with a zero
boundary. Not shown here, the default exact unconditional interval is (—0.0296, 0.8813), which is fairly wide. The
corrected Newcombe interval is the narrowest at (—0.0352, 0.8059), and it might be the most suitable for these data as
it does not exclude zero and thus is in harmony with the Fisher exact test result.

Incidence Density and Poisson Regression

The 2 x 2 table can also represent incidence densities, in which you have counts of subjects who responded with an
event versus extent of exposure for that event. These counts often follow the Poisson distribution. Some examples are:

e colony counts for bacteria or viruses
e accidents or equipment failure

e incidences for disease

Table 3 is based on the United States participants in an international study of the effect of a rotavirus vaccine in nearly
70,000 infants on health care events (hospitalizations and emergency room visits). Subjects received three doses of
the vaccine or a placebo at 4 to 12 week intervals. They were followed for one year (Vesikari 2007). Table 3 displays
the failures (hospitalizations or emergency room visits) and the person-years of exposure since not all subjects were in
the study for an entire year.

Table 3 Vaccine Study Results for US

Treatment | Events Person Years
Vaccine 3 7500
Placebo 58 7250

It is of interest to compute the ratio of incidence densities (IDR) of events for vaccine compared to placebo. Consider
Table 4.

Table 4 Vaccine Study

Treatment | Events Person Years
Vaccine Ny Ny
Placebo np Np

You can assume that n,, and n, have independent Possion distributions with expected values A, N, and A, Ny, re-
spectively. You are interested in whether the incidence densities A, and A, are the same, which can be addressed by
seeing whether the IDR is equal to 1; you determine this by evaluating its confidence limits. When the counts are small,
such as the count of 3 in Table 3, then the exact confidence limits are appropriate.

Because ny given (ny + np) has the conditional binomial distribution (under the assumption that n, and nj are inde-
pendent Poisson);

. Ao Ny

Bln(n:n +n ,Pzi)
vree ApNp + Ay Ny
then
Ay ( Ny

b G ®) _ RC

C fu(M)y o RCH+1

Ap p

You then compute p = ny/(ny + np) to produce a 100(1 — «) confidence interval (P, Py) for P. If you want the
exact confidence interval for the incidence density ratios, you compute the exact confidence interval for the binomial
proportion P. Use



NpP
(1= P)Ny
as an estimator for R, and then

Py Py
(1-PL)C" (1= Py)C
serves as a 100(1 — a)% confidence interval for IDR, the incidence density ratio.

The following SAS statements compute the exact binomial confidence intervals for the binomial proportion P in the
table and output them to a SAS data set.

data vaccine2;

input Outcome $ Count Q@Q@;
datalines;
fail 3 success 58

’

ods select BinomialCLs;
proc freq;

weight count;

tables Outcome / binomial (exact);
ods output BinomialCLs=BinomialCLs;
run;

The following SAS/IML® statements then produce the exact confidence interval for the IDR:

proc iml ;
Use BinomialCLs var{LowerCL UpperCL};
read all into CL;
print CL;
q={ 3, 7500,
Cc= ql2,]1/ql4];
P= q[11/ (ql1] + ql[3]);
R= P/ ((1-P) xC) ;
CI= CL[1]/((1-CL[1])*C)
print r CI;

quit;

58 , 7250 };

Il CL[2]1/((1-CL[2])*C) ;

The IDR that compares vaccine failure to placebo is 0.05 with an exact confidence interval of (0.01002, 0.15355).
Obviously the vaccine is much more effective than the placebo. The percent rate reduction in failures, a quantity often
used in the assessment of vaccines, is computed as 100(1-IDR)=95%.

You might also be interested in determining the relationship of the rate or incidence to a set of explanatory variables.
Events can be occurrences of rare diseases for populations with different sizes in epidemiological studies where the
explanatory variables could be risk factors. In clinical trials, the events could be occurrences of rare disorders with
possibly different levels of exposure risk; the explanatory variables are treatment and background covariates. In vaccine
studies, the rare disorders are the diseases to be prevented.

Table 5 displays the vaccine data for both the United States and Latin America. There is interest in evaluating the
effects of the vaccine with adjustment for the different regions.

Table 5 Medical Events for Rotavirus Vaccine Study

Vaccine Placebo
Region Events Person Years | Events Person Years
United States 3 7500 58 7250
Latin America 1 1250 10 1250

Since the events are considered to come from a Poisson distribution, you can perform Poisson regression to address
the influence of the explanatory variables on the rates. Suppose that Y represents the counts and has expected value
and variance both equal to u. If the exposure time is denoted as N, then the rate can be expressed as

z|=

Iog{ } =oa+xB



and this equation can be arranged as

log(u) = o + xf +log(N)

The term log(NV) is called an offset and must be accounted for in the estimation process.

If you have s independent groups referenced by i = 1,2, ..., s, each with a vector X; = (x;1, x;2, ..., xj;) of t explanatory
variables, you can write a likelihood function for the data as

o(njp) = [ ] ui texp(—pi)}/n;!

i=1
where n = (ny,nz,...,n5) and w = (1, 12, ..., us).

The loglinear Poisson model is often written as
log{n;} = log{N;} + x; B

in the generalized linear models framework, where the quantity log{N;} is the offset. Thus, you can fit Poisson re-
gression models with the GENMOD procedure, using the Poisson distribution, the log link function, and log{n; } as the
offset.

Exact Poisson regression is a useful strategy when you have small numbers of events because it does not depend on
asymptotic results. Instead, it relies on estimation of the model parameters by using the conditional distributions of the
sufficient statistics of the parameters. Since the event counts are small (1, 3) for the vaccine data in Table 5, then exact
Poisson regression might also be indicated. This analysis is available through the GENMOD procedure, beginning with
SAS/STAT 9.22.

The following SAS statements create the SAS data set ROTAVIRUS:

data rotavirus;
input region $ treatment $ counts years_risk Q@ ;
log risk=log(years_risk);

datalines;
us Vaccine 3 7500 US Placebo 58 7250
LA Vaccine 1 1250 LA Placebo 10 1250
;
run;

The following PROC GENMOD statements specify Poisson regression and exact Poisson regression. The ESTIMATE
statement is used to produce the estimated IDR for the standard analysis, comparing Vaccine and Placebo, and the ES-
TIMATE=0DDS and CLTYPE=EXACT options are used to produce the same quantities in the exact analysis (actually
CLTYPE=EXACT is the default).

proc genmod;
class region treatment/ param=ref;
model counts = treatment region / dist=poisson offset= log_risk type3;
estimate 'treatment' treatment 1 /exp;
exact treatment / estimate=odds cltype=exact;
run;

Figure 2 contains the criteria for evaluating goodness of fit. With p-values of 0.2979 for the Deviance and 0.3431 for the
Pearson chi-square (both 1 df), the model fit appears appropriate, altough the number of events is too small for formal
use of these statistics.
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Figure 2 Model Fit

The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF
Deviance 1 0.2979 0.2979
Scaled Deviance 1 0.2979 0.2979
Pearson Chi-Square 1 0.3431 0.3431
Scaled Pearson X2 1 0.3431 0.3431
Log Likelihood 189.6784

Full Log Likelihood -7.6740

AIC (smaller is better) 21.3481

AICC (smaller is better) .

BIC (smaller is better) 19.5069

Figure 3 contains the maximum likelihood parameter estimates.

Figure 3 Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates

Standard Wald 95% Wald
Parameter DF Estimate Error Confidence Limits Chi-Square
Intercept 1 -4.7886 0.3028 -5.3820 -4.1951 250.11
treatment Vaccine 1 -2.8620 0.5145 -3.8704 -1.8536 30.94
region us 1 -0.0467 0.3276 -0.6888 0.5953 0.02
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis Of Maximum Likelihood
Parameter Estimates

Parameter Pr > Chisq
Intercept <.0001
treatment Vaccine <.0001
region us 0.8865
Scale

NOTE: The scale parameter was held fixed.

Region is clearly not an influential effect, but it is considered a study design factor that should be maintained regardless
of its p-value.

Figure 4 contains the estimate of the incidence density ratio for vaccine compared to placebo. The IDR takes the value
of 0.057, which is ¢=2:362 with a confidence interval of (0.0209, 0.1567) based on the Wald chi-square statistic.

Figure 4 Estimate Statement Results

Contrast Estimate Results

Mean
Label Estimate
treatment 0.0572
Exp (treatment)

Label

treatment
Exp (treatment)

-3.8704
0.0209

Mean

Confidence Limits

0.0209

L'Beta

Confidence Limits

0.1567

-1.8536
0.1567

Contrast Estimate Results

L'Beta Standard
Estimate Error Alpha
-2.8620 0.5145 0.05
0.0572 0.0294 0.05
Chi-
Square Pr > Chisq
30.94 <.0001

Figure 5 contains the exact analysis results.



Figure 5 Exact Odds Ratio and Confidence Intervals

Exact Odds Ratios

95% Confidence Two-sided
Parameter Estimate Limits p-Value Type
treatment Vaccine 0.057 0.015 0.153 <.0001 Exact

Here, the estimate of IDR is 0.057, with an exact confidence interval of (0.015, 0.153), which is fairly similar to the
asymptotic results. The percent rate reduction of events due to the vaccine is 94%.

Randomization-Based Nonparametric Analysis of Covariance

Frequently, statisticians use analysis of covariance (ANCOVA) techniques to take the effects of covariates into account
when estimating an effect of interest, for example, treatment effect in the analysis of clinical trials. When these co-
variates are associated with the outcome, adjusting for the covariates often results in a more precise estimate of the
treatment effect. In randomized trials, covariate adjustment can help to offset the random imbalances among groups
that still occur.

Often, the parametric procedures for performing analysis of covariance, such as linear regression for continuous out-
comes, logistic regression for dichotomous outcomes, or proportional hazards regression for time-to-event outcomes
are satisfactory, but often they are not. They require large samples for the maximum likelihood methods to apply, and
when there are numerous categorical or time-to-event variables, this requirement is not met. Including interaction terms
in the model makes this even worse.

Nonparametric methods, such as rank analysis of covariance is one solution. See p. 174 in Stokes et al. (2000) for an
example of using ranks in the framework of extended Mantel-Haenszel statistics to conduct nonparametric comparisons
of treatment groups, adjusted for the effects of covariates (Koch et al. 1982, 1990).

Another solution is to use randomization-based methods. These method uses weighted least squares analysis of the
differences in groups between outcome variables and covariates simultaneously with the assumption that the differ-
ences in the covariates among groups are zero. With typical randomized studies, this expected difference would indeed
be zero. You would use these methods for the types of situations in which, except for the covariates, you would use the
CMH (Cochran-Mantel-Haenszel) test for dichotomous outcomes or the Wilcoxon Rank Sum test for ordinal outcomes.

Suppose that f, = (dj,u;,’) where dj, = (Fp1 — Vpo2) @and uy, = (X1 — Xp2). Vi represents the mean responses and
Xj; represents the mean covariates. Suppose Sy, is the estimated variance matrix for f;, relative to the randomization
hypothesis under the null hypothesis for the statistical test or relative to an assumed sampling process for confidence
interval estimation.

Suppose that wy, are weights, usually wy, = npinp,/(np; + np2), which are known as Mantel-Haenszel weights.

Form
fo Szt _ (Zn=1iSh)
= (CE) e =y

See Lavange, Durham, and Koch (2005) for the specific forms of S.

Then you fit weighted least squares regression relative to S (where S is Sy for testing the null hypothesis of no group
effect and S is S 4 for confidence interval estimation) on f in the following manner:

b=2Zs'27'Zs7 't
The estimated variance can be expressed as:

v = (287 12)7!

Z = [1,0'] and b represents group difference and b + 1.96./v3 is a 0.95 confidence interval for the group comparison.
Q=b? /vy is a chi-square (df=1) test statistic for the hypothesis of equal group effect.
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Effectively, this approach averages group differences for the means of the outcome variables as well as the differences
of the means of the covariates across strata using the appropriate weights to control for the effects of the strata. In a
clinical trial setting, the group would represent treatment and the strata would represent clinics or centers. Covariate
adjusted group differences are then computed with the weighted least squares regression step.

If the stratum sample sizes are sufficiently large, then these steps can be reversed. The covariate adjustments are
performed on a within-stratum basis, and then the adjusted group difference estimates are averaged across the strata
using the appropriate weights. The model above is applied to the f;, and S for each strata to obtain b, and vy,
and then the weights are applied as above to form the linear combinations b and v;. If you want to evaluate group
by subgroup interactions, you can apply these operations to each subgroup and then compare the bs across the
subgroups.

These methods are applicable when the outcomes are continuous, ordinal, or time-to-event variables. They are also
applicable to the evaluation of differences of binomial proportions that result when the outcome is dichotomous. For
more information, see LaVange, Durham, and Koch (2005), and Koch, Tangen et al. (1998).

Respiratory Data Example

A multi-center, multi-visit clinical trial compared two treatments for patients with a respiratory disorder (Stokes et al.
2000). Responses were recorded on a 1-5 scale, for terrible, poor, fair, good, or excellent response. In addition,
researchers recorded age, gender, and baseline. One hundred eleven patients were seen at two centers at each of
four visits.

Table 6 Partial Listing of Center 1 Respiratory Patients
Patient Drug Sex Age Baseline Visit1 Visit2 Visit3 Visit4

53 A F 32 1 2 3 4 2
18 A F 47 2 2 3 4 4
43 A M 11 4 4 4 4 2
12 A M 14 2 3 3 3 2
51 A M 15 0 2 3 3 3
20 A M 20 3 3 2 3 1
16 A M 22 2 1 3 3 3

Table 7 displays p-values for the association of covariables with both treatment and response. These p-values should
be viewed as descriptive guides only.

Table 7 Descriptive p-Values for Association
Age Gender Baseline

Visit 1 0.53 0.34 <0.001
Visit 2 0.22 0.17 <0.001
Visit 3 0.13 0.47 <0.001
Visit 4 0.03 0.54 <0.001

Treatment | 0.73 0.013 0.98

Baseline is strongly associated with the response (Visits) and exhibits no imbalance for treatment. Gender has es-
sentially no association with the response, but it does demonstrate a random imbalance. Age is associated with the
response for the last visit, and there is no imbalance for treatment with respect to age.

You can apply the randomization-based nonparametric ANCOVA methods to the analysis of these data with the Npar-
Cov2 SAS macro (Zink and Koch 2001). The following analysis focuses on the Visit 1 results and is directed at the
dichotomous response variable that compares treatments on good or excellent response. The dj, are the differences in
the proportion of (good or excellent response) for each stratum. Four analyses are performed:

e unadjusted
e adjusted for baseline

e adjusted for baseline, stratified by center under Hy

e adjusted for baseline, stratified by center under H 4



The NparCov2 macro requires that the SAS data set be structured so that all of a subject’s data are on one line (you
can analyse multiple responses) and all variables need to be numeric. The following SAS statements create data set
RESP and compute a few dummy variables from character variables.

%$include 'NParCov2.macro.sas';
data resp;

input center id treatment $ sex $ age baseline

visitl-visit4d QQ;

datalines;

1 53 AF 321 2242 2 30AF 371 34
1 18 AF 472 2344 2 52AF 392 34
1 54AM 11 4 4442 2 23AF 604 43
1 12AM 142 3332 2 54AF 634 44
1 51AM 150 2333 2 12AM 13 4 4 4
1 20AM 203 3231 2 10AM 141 4 4
1 16AM 221 2223 2 27AM 193 3 2
1 50AM 222 1344 2 16AM 202 4 4

data resp2; set resp;
id=centerx1000 + id;
Itreat=(treatment='A");
Icenter=(center=l);
Isex=(sex='M');
divisitl=(visitl=3 or visitl=4);
di_base (baseline=3 or baseline=4);
run;

BWw b Wb D

W Wb &b DD

The following NPARCOV2 statements specify an analysis with an adjustment just for BASELINE under the null hypothe-
sis. C=1 specifies Mantel-Haenszel weights, and METHOD=SMALL specifies that the weighted averages of treatment
group differences are taken across the strata and then the covariance adjustment is performed. This is appropriate
when the strata sizes are relatively small. See Zink and Koch (2001) for more information about using the NparCov

macro.

%$let deps divisitl;
%let covs=baseline;
%$let stra=Icenter;
%$let treat=Itreat;

$NParCov (outcomes=&deps, covars=&covs,

Figure 6 displays the results.

treatmnt=&treat, c=1, hypoth=0, method=small, data=resp2);

Figure 6 Results of Nonparametric ANCOVA for Dichotomous Outcome

Method = SMALL
No Stratification Variable
Variance Under Null Hypothesis
Covariables: BASELINE

Tests Between Groups For Outcome Variables

beta

sebeta

DIVISIT1 0.1980347 0.0783509 6.3884449

wald df pvalue

1 0.0114866

Q takes the value 6.388 with p = 0.0115.

The next call to NparCov requests an analysis that is stratified by center and adjusted by baseline under the alternative
hypothesis. This produces estimates of the treatment difference and its confidence interval.

%NParCov (outcomes=&deps, covars=&covs, strat=é&stra,

treatmnt=&treat, c=1, hypoth=1, method=small, data=resp2);

Figure 7 displays the results. Q 4 is 6.697 with p=0.0097. Since the alternative hypotheses was used, the treatment

difference and confidence intervals are also computed.
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Figure 7 Results of Nonparametric ANCOVA for Dichotomous Outcome

Method = SMALL
Stratification Variable = ICENTER
Variance Under Alternative Hypothesis
Covariables: BASELINE
Tests Between Groups For Outcome Variables

beta sebeta wald df pvalue
DIVISIT1 0.1970391 0.07614 6.6969794 1 0.0096576

95% Confidence Intervals for Beta

beta sebeta lower upper

DIVISIT1 0.1970391 0.07614 0.0478074 0.3462708

Table 8 summarizes the results for these analyses. The unadjusted results and the results adjusted for baseline and
center under the null hypothesis are also displayed (code not shown).

Table 8 Descriptive p-Values for Association

Model Chi-Square (1df)  p-Value Treatment Difference 95% ClI
Unadjusted 4.260 0.0390 0.194 (0.015,0.373)
Baseline adjusted (Hyp) 6.388 0.0115 NA
Baseline adjusted

and center stratified (Hp) 6.337 0.0118 NA
Baseline adjusted

and center stratified (H4) 6.697 0.0097 197 (0.048,0.346)

Adjusting for baseline produces stronger results than those produced by the unadjusted analysis. However, also strat-
ifying on center does not change the picture. The treatment difference is roughly 0.20 for patients receiving treatment
compared to those receiving the placebo with a confidence interval of (0.048, 0.346). The treatment difference is similar
to that seen in the unadjusted analysis (0.194), but the confidence interval for the former is narrower than that of the
latter (0.015, 0.373). See Lavange and Koch (2008) for a more detailed analysis of these data with these methods.

Note that the Hy unadjusted nonparametric ANCOVA results without stratification are the same as would be obtained
if you fit a linear regression model to the response variable with baseline as the predictor, took the residuals from this
model, and then analyzed them for their association with treatment using the extended MH chi-square test to compare
mean scores.

These methods can also be used for ordinal and continuous outcomes, so, for example, you could use the ordinal
scores for the responses in this data set. In addition, these methods have been extended to compare the logits in a
logistic regression and have also been extended to time-to-event data (Tangen and Koch 1999 and Saville et al. 2010,
2011).

Conditional Logistic Regression

Conditional logistic regression has been used as a technique for analyzing retrospective studies in epidemiological work
for many years. In these studies, you match cases with an event of interest with controls who didn’t have the event. You
determine whether the case and control have the risk factors under investigation, and, by using a conditional likelihood,
predict the event given the explanatory variables. You set up the probabilities for having the exposure given the event
and then use Bayes’ theorem to determine the relevant condtional likelihood.

More recently, conditional logistic regression is used frequently in the analysis of highly stratified data, and it is also
used for the analysis of crossover studies. With highly stratified data, common in many clinical trials settings, you may
have a small number of events per stratum relative to the number of parameters you want to estimate. Thus, the sample
size requirements for the standard maximum likelihood approach to unconditional logistic regresson are not applicable.
Crossover designs, in which subjects act as their own controls, provide a similar conumdrum.

Stokes et al. (2000) include an example of a clinical trial in which researchers studied the effect of a treatment for a skin
condition. A pair of patients participated in each of 79 clinics; one patient received the treatment, and the other patient
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received the placebo. Age, sex, and initial grade for skin condition were also recorded. The response was whether the
patient’s skin improved.

Since there are only two observations per center, you cannot estimate all of these parameters without bias. However,
you can fit a model based on conditional probabilities that condition away the center effects, which results in a model
that contains substantially fewer parameters.

Suppose y;; represents the patient from the jth clinic and the jth treatment (/=1 through 79 and j=1, 2). Suppose y;;
=1 if improvement occurs and y;;=0 otherwise. Suppose x;; = 1 for treatment and x;; = 0 for placebo. Suppose
z=z;j1.zij2. ... Zij:) represents the + explanatory variables.

The usual likelihood for {y;; } is written

expla; + Bxij +y'zij}
1 + exp{o; + ﬂxij + )//Zij}

Privij} = mij =

where «; is the effect of the ith clinic, 8 is the treatment parameter, and y’ = (y1.,y2. ..., y;) is the parameter vector for
the covariates z. The «; are known as nuisance parameters.

You can write a conditional probability for {y;; } as the ratio of the joint probability of a pair’s treatment patient improving
and the pair’s placebo patient not improving to the joint probability that either the treatment patient or the placebo patient
improved.

Priyii=1} Priyia=0}
Priyii=1, yi2=0|yi1=L1, yj2=0 0r y;;=0, yjo=1} =
nston=ohu=ton=oonm=0a=1) = g e G ey =0T

You write the probabilities in terms of the logistic model,

explo; + B +y'zin} 1
1 +expl{o; +B+y'zi1} 1+ expla; +y'2ir}

Priyii=1} Priyi2=0} =

and

Privii=13 Pr{yia=0} + Pr{yj1=0} Priy;>=1} =

explo; + B +v'zin} 1
1+expi{a; +B+y'zi1} 1+expla; +y'2i5}

N ! - oplon + ¥z}
1+expla; + B+ y'zi1} 1+ exple; +y'2in}

If you form their ratio and cancel like terms, this expression reduces to:

exp{f + y'(zi1 — zi2)}
1+ exp{B + y'(zi1 —2i2)}

Focusing on modeling a meaningful conditional probability allows you to develop a model that has a reduced number
of parameters that can be estimated without bias.

You can actually fit this model with a standard logistic regression model by using the pairs that have either a (1,0) or
(0,1) response pattern and using the Z;; — Z;, as the explanatory variables. There are 34 centers with the pattern (1,0)
and 20 centers with the pattern (0,1).
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The LOGISTIC procedure provides conditional logistic regression with the inclusion of a STRATA statement to denote
the conditioning variable.

The following PROC LOGISTIC statements produce this analysis for the skin condition data (SAS data set TRIAL2
assumed). The variable CENTER is placed in the STRATA statement. Explanatory variables in the MODEL statement
include the main effects and pairwise interactions. By specifying the SELECTION=FORWARD option in conjunction
with the INCLUDE=4 option, you ensure that initial skin condition, age, sex, and treatment main effects are included in
the model and a residual score statistics is produced.

ods graphics on;
proc logistic plots(only)=oddsratio (logbase=e);
class center treat sex / param=ref ref= first;
strata center;
model improve = initial age sex treat sexxage sexx*initial agexinitial
sexxtreat treatxinitial treatxage / selection=forward include=4 details clodds=wald;
units age=10 /default=1l;
run;
ods graphics off;

Note that the UNITS statement specifies units per changes for the odds ratios for continuous variables; you need to
specify the DEFAULT= option if you still want odds ratios produced for the unspecified continuous variables in the
model.

Figure 8 displays the strata information. Note the only the observations with Response Profile 2 play a role in the
analysis, as discussed previously.

Figure 8 Strata Summary

The LOGISTIC Procedure
Conditional Analysis

Strata Summary

improve
Response @ -—-—————— Number of
Pattern 1 2 Strata Frequency
1 0 2 7 14
2 1 1 54 108
3 2 0 18 36

Using SELECTION=FORWARD and the INCLUDE= option produces the residual chi-square to assess the fit of the
main effects model since it assesses the joint contribution of the interaction terms in the MODEL statement.

Figure 9 Residual Chi-Square

Residual Chi-Square Test
Chi-Square DF Pr > Chisq

4.7214 6 0.5800

Since 20 observations have the less prevalent response, this model can only support about 20/5=4 terms, so the
appropriateness of the residual chi-square is questionable. However, since its p-value is quite high—greater than 0.5,
and the individual tests of the interaction terms generally have reasonably high p-values as well (not shown here),
there is good confidence that the main effects model fits reasonably well. (Note that if you specify only TREAT as the
explanatory variable, the residual score test for TREAT is comparable to McNemar’s test. That model has an estimated
odds ratio that is the same as the matched pairs odds ratio.)

Model adequacy is also supported by the model fit statistics and the global tests, as shown in Table 10 and Table 11.
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Figure 10 Fit Statistics

Model Fit Statistics
Without With
Criterion Covariates Covariates
AIC 74.860 58.562
sC 74.860 70.813
-2 Log L 74.860 50.562

Figure 11 Global Tests

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 24.2976 4 <.0001
Score 19.8658 4 0.0005
Wald 13.0100 4 0.0112

However, note that the disagreement among the statistics in Figure 11 suggests the need to consider an exact analysis
as well.

Figure 12 displays the parameter estimates for the main effects model. Initial grade has a strong influence, and treat-
ment is marginally influential (»=0.0511).

Figure 12 Parameter Estimates

Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChisSq
initial 1 1.0915 0.3351 10.6106 0.0011
age 1 0.0248 0.0224 1.2253 0.2683
sex m 1 0.5312 0.5545 0.9176 0.3381
treat t 1 0.7025 0.3601 3.8053 0.0511

Figure 13 displays the odds ratios for this model.

Figure 13 Odds Ratios

Odds Ratio Estimates
Point 95% Wald
Effect Estimate Confidence Limits
initial 2.979 1.545 5.745
age 1.025 0.981 1.071
sex mvs £ 1.701 0.574 5.043
treat t vs p 2.019 0.997 4.089

The odds of improvement for those on treatment is ¢%-792°=2.019 times higher than for those on placebo, adjusted
for initial grade, age, and sex. The odds ratios for odds of improvement and related confidence intervals for all of the
explanatory variables are displayed graphically in Figure 14.
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Figure 14 Odds Ratios from the Main Effects Model

Odds Ratios with 95% Wald Confidence Limits

Statistics and Data Analysis

initial } ® |
age units=10 } ® |
sex myvsf f °® |
treat tvsp ® I
I I I
0.5 1 2 4
Odds Ratio

You can also obtain the exact odds ratio estimates by fitting the same model with the EXACT statement. You need to re-
move the SELECTION=FORWARD option. Specify TREAT in the EXACT statement and specify the ESTIMATE=ODDS
option:

proc logistic;
class center treat sex / param=ref ref= first;
strata center;
model improve = initial age sex treat / clodds=wald;
exact treat / estimate=odds;

run;

Figure 15 displays these results.

Figure 15 Exact Odds Ratio for Treatment Adjusted for Other Variables

The LOGISTIC Procedure
Exact Conditional Analysis

Exact Odds Ratios

95% Confidence Two—-sided
Parameter Estimate Limits p-Value Type
treat t 1.943 0.950 4.281 0.0715 Exact

The exact conditional analysis odds ratio estimate is 1.943 for treatment compared to placebo, and its 95% confidence
interval is (0.950, 4.281). The exact p-value is 0.0715.
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Consider repeating the exact analysis with treatment as the only explanatory variable. You would obtain the same exact
odds ratio estimate as you do when you perform a stratified analysis by center of treatment and improvement with the
FREQ procedure and request the exact odds ratio (COMOR option), which is only available for the analysis of stratified
2 x 2 tables. See Table 16 for the results.

Figure 16 Exact Odds Ratio for Treatment

The LOGISTIC Procedure
Exact Conditional Analysis

Exact Odds Ratios

95% Confidence Two-sided
Parameter Estimate Limits p-Value Type
treat t 1.700 0.951 3.117 0.0759 Exact

Note that the p-value of 0.0759 is also identical to what you would get for the exact McNemar’s test for these data for
the table of treatment by outcome with counts representing the pairs of subjects from the centers.

proc freq;
tables centerxtreatximprove / noprint;
exact comor;

run;

Figure 17 Exact Odds Ratio for Treatment with PROC FREQ

The FREQ Procedure

Summary Statistics for treat by fimprove
Controlling for center

Common Odds Ratio

Mantel-Haenszel Estimate 1.7000

Asymptotic Conf Limits

95% Lower Conf Limit 0.9785
95% Upper Conf Limit 2.9534
Exact Conf Limits

95% Lower Conf Limit 0.9509
95% Upper Conf Limit 3.1168

The PROC FREQ results are the same as those for PROC LOGISTIC. The value of obtaining this estimate with the
LOGISTIC procedure is that you are not limited to the case of a single, dichotomous explanatory variable.

Bayesian Methods

Bayesian methods have become widely used in the past 15 years. These methods treat parameters as random vari-
ables and define probabilities in terms of ‘degrees of belief’; you can make probability statements about them. Bayesian
methods allow you to incorporate prior information into your data analysis, such as historical knowledge or expert opin-
ion, and they provide a framework for addressing specific scientific questions that can not be addressed with single
point estimates.

Given data x = {x1, ..., x5}, Bayesian inference is carried out in the following way:

1. You choose a prior distribution 7 (8) for 6. The distribution describes your beliefs about the parameter before you
examine the data.

2. Given the observed data x, you select a model (density) f(x|0) to describe the distribution of x given 6.

3. You update your beliefs about 6 by combining information from the prior distribution and the data through the
calculation of the posterior distribution 7 (0|X).

The third step is carried out by using Bayes’ theorem, which enables you to combine the prior distribution and the
model.

16



Bayesian methods provide a convenient setting for a wide range of statistical models, including hierarchical models
and missing data problems. These methods provide inferences that are conditional on the data and are exact, without
relying on asymptotic approximation. Small sample inference proceeds in the same way as if you had a large sample.
Bayesian estimation does often come with high computational costs, since they usually depend on simulation algorithms
to draw samples from target posterior distributions and use these samples to form estimates, such as Monte Carlo
methods. However, modern computing makes these computational requirements tractable. For more information, see
“Introduction to Bayesian Analysis Procedures” in the SAS/STAT User’s Guide, which includes a reading list of Bayesian
textbooks and review papers at varying levels of expertise.

Bayesian methods have been applied to a variety of categorical data analyses, mainly for statistical modeling appli-
cations. You can produce Bayesian counterparts of frequentist categorical data modeling techniques such as logistic
regression and Poisson regression. The following example describes how to perform Bayesian logistic regression using
the GENMOD procedure in SAS/STAT software. It assumes a knowledge of basic Bayesian methodology.

Researchers were interested in determining the influence of an environmental toxin on the number of deaths of beetles
in a certain geographic location. The following SAS statements create the SAS data set BEETLES:

data beetles;
input n y x Q@;

datalines;
6 0 25.7 8 2 35.9 5 2 32.9 7 7 50.4 6 0 28.3
7 2 32.3 5 1 33.2 8 3 40.9 6 0 36.5 6 1 36.5
6 6 49.6 6 3 39.8 6 4 43.6 6 1 34.1 7 1 37.4
8 2 35.2 6 6 51.3 5 3 42.5 7 0 31.3 3 2 40.6

’

The variable Y represents the number of deaths for total beetles N exposed to a specific level X of the environmental
toxin. Thus, y; can be considered to come from a binomial distribution (n;, p;) where p; is the probability of death.
Logistic regression is an appropriate modeling technique for assessing the influence of the toxin on the number of
beetle deaths.

In order to perform a Bayesian analysis, you need to decide on the appropriate priors for the model parameters, an
intercept «, and a coefficient 8 for the toxin. Since no previous study information or expert opinion is available, a diffuse
normal prior is assumed for both parameters, or Normal(0, 10°). The following PROC GENMOD statements request a
Bayesian logistic regression analysis.

proc genmod data=beetles;

model y/n= x / dist=bin link=logit;

bayes seed=1 coeffprior=normal outpost=postbeetle;
run;

You specify a logistic regression model with the MODEL statement, using events/trials syntax for the response in this
case. Specifying DIST=BIN and LINK=LOGIT requests logistic regression. The BAYES statement requests a Bayesian
analysis. The COEFFPRIOR=NORMAL requests the normal diffuse prior; otherwise, the uniform prior would be the
default. Jeffreys’ prior is also available. The OUTPOST=POSTBEETLE option requests that the posterior estimates be
placed in the data set POSTBEETLE. Using a specific SEED value means that you can reproduce the exact results in
a subsequent execution of these statements. The adaptive rejection algorithm is used to draw posterior samples in a
Gibbs scheme.

Figure 18 displays the diagnostic plots for this model. The trace, autocorrelation, and density plots all show that the
Markov chain has achieved satisfactory convergence for the X parameter. The same is true for the intercept (not shown
here).
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Figure 18 Diagnostics for X
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Figure 19 displays the DIC fit statistic. The DIC (Deviance Information Criterion)is defined similarly to the AIC and
trades off goodness of fit and model complexity. Smaller is better, and you can use it to compare different (non-nested)
models.

Figure 19 Bayesian Fit Statistics

The GENMOD Procedure
Bayesian Analysis
Fit Statistics

DIC (smaller is better) 46.440
pD (effective number of parameters) 1.969

Figure 20 and Figure 21 display the autocorrelations and the effective sample sizes for this analysis. The posterior
sample autocorrelations after 1 lag are negligible, as previously seen on the autocorrelation plot—another indication of
good mixing.
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Figure 20 Posterior Autocorrelations

The GENMOD Procedure
Bayesian Analysis

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50
Intercept 0.0290 0.0052 0.0039 -0.0084
x 0.0154 0.0057 0.0048 -0.0050

Figure 21 Effective Sample Sizes

Effective Sample Sizes

Autocorrelation
Parameter ESS Time Efficiency
Intercept 9208.6 1.0859 0.9209
x 9427.9 1.0607 0.9428

The effective sample sizes for both parameters are over 9,000, reasonable since a simulation size of 10,000 samples
was used.

Figure 22 contains the posterior summaries. The estimate of the mean of the marginal posterior distribution for the
intercept is —11.7746, and the sample mean for the coefficient for X is 0.2922. The two 95% credible intervals for
the intercept are both negative, as shown in Figure 23, and the same intervals are both positive for the X coefficient.
Clearly, the environment toxin has a sizable impact on the probability of death for these beetles.

Figure 22 Posterior Summaries

The GENMOD Procedure
Bayesian Analysis

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%
Intercept 10000 -11.7746 2.0588 -13.0990 -11.6434 -10.3366
x 10000 0.2922 0.0532 0.2546 0.2891 0.3263

Figure 23 Posterior Intervals

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval
Intercept 0.050 -16.1021 -8.0552 -16.0120 -8.0001
x 0.050 0.1957 0.4045 0.1929 0.4005

Note that since noninformative priors are used, these parameter estimates are similar to those you would obtain with a
maximum likelhood analysis.

An advantage of Bayesian methods, regardless of whether informative or noninformative priors are used, is that its
framework that allows you to address scientific questions directly. You can determine the posterior probability that the
environmental toxin increases the probability of death, or Pr{ > 0|y}. You do this by assessing whether the simulated
values of B saved to SAS data set POSTBEETLE are greater than zero. The following PROC FORMAT and PROC
FREQ statements are one way to perform this analysis.

proc format;

value Xfmt low-0 = 'X <= 0' O<-high = 'X > 0';
run;
proc freq data=postbeetle;
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tables X /nocum;
format X Xfmt.;
run;

All of the simulated values for B are indeed greater than zero, as seen in Figure 24, so the sample estimate of the
posterior probability that 8 > 0 is 100%. The evidence that the environmental toxin impacts beetle devastation is
overwhelming.

Figure 24 Effective Sample Sizes

The FREQ Procedure

b3 Frequency Percent

X >0 10000 100.00

Suppose you are interested in computing some of the percentiles of the tolerance distribution, or the level of the
environmental toxin X at which 5%, 50%, and 95% of the beetles succumbed. These quantities are known as LD5,
LD50, and LD95, for lethal dose. If p represents the probability of interest, then you solve the following equation for x

for the various values of p to obtain the LDs. For example, LD50=—4/§.

With Bayesian analysis, you can readily make inferences on quantities that are transformations of the random variables.
You compute the LDs with DATA step operations on the saved posterior samples data set POSTBEETLE. In addition,
by producing the 0.025 and 0.975 percentiles of these quantities, you can generate equal-tailed 95% credible intervals
for them.

First, LDs are created for each of the posterior samples:

data LDgenerate;
set postbeetle;

LDO5 = (log(0.05 / 0.95) - intercept) / x;
LD50 = (log(0.50 / 0.50) - intercept) / x;
LD95 = (log(0.95 / 0.05) - intercept) / x;

run;

The UNIVARIATE procedure computes the posterior mean for the LD variables as well as their 0.025 and 0.975 per-
centiles.

proc univariate data=LDgenerate noprint;
var 1d05 1d50 1d95;
output out=LDinfo
mean=LD5 LD50 LD95
pctlpts=2.5 97.5
pctlpre= 1d05_ 1d50_ 1d95_;
run;
proc print data=LDinfo;
run;

Figure 25 LD Information

1d05_ 1d50_ 1d95_
Obs LD5 LD50 LD95 1d05_2_5 97_5 1d50_2_5 97_5 1d95.2_5 97_5

1 29.9404 40.3664 50.7924 25.7704 32.9615 38.6752 42.3798 46.7259 56.5187

Table 9 displays the estimated LDs and their 95% equal-tailed credible intervals.
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Table 9 Lethal Dose Estimates for Beetle Data

Lethal Dose | Posterior Mean 95% Equal-Tailed Interval
LD5 29.9404 (25.7704, 32.9615)
LD50 40.3664 (38.6752, 42.3798)
LD95 50.7924 (46.7259, 56.5187)

The SGPLOT procedure displays these results graphically with overlaid kernel density plots.

proc sgplot data=LDgenerate;
title "Kernel Densities of Lethal Doses";
xaxis label = "Lethal Dose" grid;
density LDO5 / type = kernel legendlabel="dose at 5% death rate";
density LD50 / type kernel legendlabel="dose at 50% death rate";
density LD95 / type = kernel legendlabel="dose at 95% death rate";
keylegend / location=inside position=topright across=1;

run;

Figure 26 Kernel Densities for Beetle LDs
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The use of Bayesian methods for categorical data analysis is an active area of reseach and application. For example,
see Chapter 11 in Agresti (2010) for a discussion of Bayesian methods applied in ordinal categorical data analysis.

Agreement Plots

Observer agreement studies have been a mainstay in many fields such as medicine, epidemiology, and psychological
measurement and testing in which observer error can be an important source of measurement error. Sometimes,
different observers evaluate the same subject, image, or test and reach different conclusions. Evaluating observer
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agreement is thus important both for understanding the sources of measurement error and as part of a protocol for
evaluating new procedures.

The kappa coefficient is a statistic used to evaluate observer agreement (Cohen 1960).

Suppose 7;; is the probability of a subject being classified in the ith category by the first observer and the jth category
by the second observer. Then

I, = Zm’i

is the probability that the observers agree. If the ratings are independent, then the probability of agreement is
He = Z]Ti+7t+i

So, I1, — I1. is the amount of agreement beyond that expected by chance. The kappa coefficient is defined as

M, — I,
1— 1,

K =

Since I, = 1 when there is perfect agreement (all non-diagonal elements are zero), « equals 1 when there is perfect
agreement, and k equals 0 when the agreement equals that expected by chance. The closer the value is to 1, the more
agreement there is in the table.

A graph can help to interpret the underlying agreement associated with a particular estimated kappa coefficient, and
the FREQ procedure provides the agreement plot with SAS/STAT 9.3. The following example is from p. 112 in Stokes
et al. 2000. Patients with multiple sclerosis were classified into four diagnostic classes by two neurologists.

The following code creates SAS data set CLASSIFY.

data classify;

input no_rater w_rater count @@;
datalines;
113812 5
21332211
3110 3 2 14
41 342 7
run;

3
3
3
3

wouwo
= W N
P
(=2 W= )

1
2
3
4

PROC FREQ procedures the corresponding contingency table and the kappa coefficient. The agreement plot is pro-
duced when ODS Graphics is enabled:

ods graphics on;
proc freq;
weight count;
tables no_rater*w_rater / agree norow nocol nopct;
run;
ods graphics off;

Figure 27 Classified Patients

Kernel Densities of Lethal Doses
The FREQ Procedure
Table of no_rater by w_rater
no_rater w_rater
Frequency | 1] 2| 3] 4| Total
1 i 38 i 5 T 0 i 1 T 44
2 i 33 i 11 i 3 i 0 i 47
31 100 14 5 61 35
4 i 3 i 7 i 3 i 10 i 23
Total ' 84 l 37 l 11 l 17 l 149
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Figure 28 Kappa Coefficient

Kappa Statistics

Statistic Value ASE 95% Confidence Limits
Simple Kappa 0.2079 0.0505 0.1091 0.3068
Weighted Kappa 0.3797 0.0517 0.2785 0.4810

The estimated kappa coefficient has the value 0.2079, which indicates slight agreement. The agreement plot displays
the nature of the agreement (Bangdiwala and Bryan 1987).

Figure 29 Agreement Plot for MS Patient Study
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Conclusion

Like other areas in statistics, categorical data analysis continues to evolve with time, and thus so does the software that
implements it. The strategy of assessing association in a data set often goes hand-in-hand with a modeling strategy for
describing it and methods for both strategies have been refined. The computing advances that make exact methods and
Bayesian methods feasible are often the driving force for advances in methodology, but so is the continuing research that
provides more information about the properties of the statistical methods and allows one to determine best practices.
This paper illustrates some of the newer methods that are now available and describes how to apply them to typical
situations with SAS software.
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Appendix

The following SAS/IML code produces confidence limits for the difference of proportions using Newcombe’s method for
the continuity corrected case.

proc iml;

z = 1.96;

y = 10; n = 12; p=y/n; q=1-p; pl=y/n;

11 = (2*n*p + z**2 —-l-z*sqrt( z**2 — 2-1/n+4*p* (nxg+l) )) /(2% (n+zx%x2));
ul = (2*n+*p + zZ**2 +1l+zxsqrt( z**2 + 2-1/n+d*p* (nxqg-1) )) /(2*(n+z**x2));
y=2; n=6; p = y/n; g=1-p; p2=y/n;

12 = (2*n*p + z**2 —-l-z*sqrt( z*x*2 2-1/n+4*p* (nxqg+l) )) /(2% (n+z*x*2));
u2 = (2*n*p + z**2 +1l+zxsqgrt( z**2 + 2-1/n+d*p* (nxg-1) )) /(2* (n+z**x2));
Lplp2 = (pl-p2) - sqrt( (pl-11l)#*x2 + (u2-p2)=**2 );
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Uplp2 = (pl-p2) + sqrt( (ul-pl)**x2 + (p2-12)*x2 ) ;

plp2 = pl-p2;

print "Single Proportion Groupl" pl 11 ul;

print "Single Proportion Group2" p2 12 u2;

print "Difference pl-p2" plp2 Lplp2 Uplp2;

quit;
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