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ABSTRACT

The MCMC procedure, first released in SAS/STAT® 9.2, provides a flexible environment for fitting a wide range of
Bayesian statistical models. Key enhancements in SAS/STAT 9.22 and 9.3 offer additional functionality and improved
performance. The RANDOM statement provides a convenient way to specify linear and nonlinear random-effects
models along with substantially improved performance. The MCMC procedure also supports multivariate distributions,
such as the multivariate normal and inverse-Wishart distributions, and implements conjugate sampling methods when
appropriate to improve sampling speed.

This paper describes key enhancements of PROC MCMC in SAS/STAT 9.22 and 9.3 and illustrates the use of these
enhancements with examples.

INTRODUCTION

The MCMC procedure is a Bayesian sampling procedure based on Markov chain Monte Carlo methods. First released
in SAS/STAT 9.2, PROC MCMC accommodates a broad range of Bayesian statistical models, and its main sampling
mechanism is a self-tuned random walk Metropolis algorithm. You can use the MCMC procedure to fit linear or nonlinear
models that take various forms (for example, a multilevel model in which the parameters have a nonlinear relationship
with the response variable and the likelihood takes on a nonstandard form). For an overview of the MCMC procedure,
see Chen (2009).

This paper focuses on two key enhancements to PROC MCMC in SAS/STAT 9.3: the RANDOM statement and multi-
variate distributions. It also illustrates the usage of the PREDDIST statement (available in SAS/STAT 9.22) for posterior
prediction and explains the newly implemented conjugate sampling algorithms that are available in SAS/STAT 9.3.

USING PROC MCMC

To use PROC MCMC, you specify the model parameters, the prior distributions, and the likelihood function (the con-
ditional distribution of the response variable given the parameters and covariates). The prior and likelihood function
jointly define a posterior distribution, which becomes the objective function that PROC MCMC uses in simulation.

The simplest call to the MCMC procedure has the following form:

PROC MCMC options;
PARMS;  declare model parameters

PRIOR;  declare prior distributions, log((6))

Programming statements; declare the likelihood function, log(f(y;|0)), for each
MODEL; observation
Run;

The options control simulation setup, posterior calculation, convergence diagnostics, and plotting. The MCMC proce-
dure enables you to work with either standard distributions (normal, Poisson, truncated gamma, and so on) or construct
a general distribution using SAS programming statements. If you are working with a large number of parameters, you
can use multiple PARMS statements to place them in blocks. Each block of parameters is updated in the Metropolis
algorithm conditionally in every iteration.

By default, PROC MCMC assumes that all observations are independent and calculates the posterior density (on the
logarithm scale) as

log(p(8ly)) = log(w(6)) + Y log(f(yi|6)) + C

i=1

where 6 can be a multidimensional parameter vector, f(y;|0) is the likelihood function for a single observation in the
data set, n is the sample size, and C is a constant that can be ignored.



In addition to the essential statements, you can use the BEGINCNST/ENDCNST and BEGINNODATA/ENDNODATA
statements to reduce unnecessary evaluation and shorten simulation time:

BEGINCNST;

Programming statements; declare constant terms
ENDCNST;

BEGINNODATA;
Programming statements; calculate functions of parameters
ENDNODATA;

The BEGINCNST and ENDCNST statements define a block within which PROC MCMC processes the programming
statements only during the setup stage of the simulation. Enclose within the BEGINCNST and ENDCNST statements
any programming statements that you want to perform only once (such as statements that define a constant or import
data set variables into arrays). Similarly, the BEGINNODATA and ENDNODATA statements define a block within which
PROC MCMC processes the programming statements without stepping through the entire data set. These are best
used to reduce unnecessary observation-level computations. Enclose within the BEGINNODATA and ENDNODATA
statements any computations that are identical for every observation (such as transformation of parameters).

RANDOM-EFFECTS MODELS

One of the most frequently used statistical model is the random-effects model. Suppose you are interested in modeling
data that consist of groups of populations. These clusters of subjects (such as students in different schools) share a
response (for example, a testing score), some common characteristic measures (for example, age and gender), and
cluster-specific characteristics (for example, different teaching methods, such as Montessori versus traditional). You
can use the following generic setup of a random-effects model to model this type of data:

Yij=a-X;j+B8; +¢€j, j=1---J, i=1--n; (1)

where Y;; is the response value of the ith subject in the jth cluster, J is the total number of clusters, and n; is the
total number of subjects in the jth cluster. The parameter « is the shared regression coefficient for covariate X;;, and
¢;; are independent and identically distributed (i.i.d.) errors from a common distribution. The 8; (the random effects)
are the varying intercepts that are used to model the cluster-specific effect. Often it is assumed that §; arise from the
same distribution,

Bj ~m(6) @)

where 6 are the hyperparameters.

If the error term ¢;; is assumed to have a normal distribution, then model (1) becomes a linear random-effects model.
If you choose to model the response variable in a different approach, such as

E(Yij) = g(pn- Xij + Bj)

where the expected value of the response is related to the regression through some functional transformation, the
result is either a generalized linear model (if Y;; is assumed to arise from the exponential family and g(-) is a one-
to-one monotone transformation) or a nonlinear random-effects model (which accommodates an even wider range of
distributions and flexible transformations).

Since there is no limit on the number or levels of clusters that you can include in the model, random-effects models
provide a natural and flexible tool to measure either individual- or cluster-level dynamics. The first part of the paper
focuses on explaining the use of the RANDOM statement in fitting random-effects models.

It is not the intent of this paper to provide a comprehensive overview of literature on Bayesian random-effects models.
Interested readers can refer to papers and text books such as Lindley and Smith (1972), Box and Tiao (1973, Chapter
5), Zeger and Karim (1991), Gelman and Hill (2007), and Congdon (2010), and references within.

MULTIVARIATE DISTRIBUTIONS

Often you encounter data that involve multiple response variables and for which you want to model the multiple out-
comes jointly (on the observational level) to capture the data variability across dimensions. One example is multivariate
normal regression; another example is the multinomial model used in repeated measurement study. In other cases,



you might be interested in specifying a multivariate prior distribution for multiple random effects with an unstructured
covariance matrix.

In previous SAS/STAT releases, specifying a multivariate distribution in PROC MCMC required the use of the general
function and programming statements to construct the logarithm of the density. And PROC MCMC could not efficiently
sample constrained multivariate parameters (for example, the covariance matrix that must be positive definite) using the
random walk Metropolis algorithm. The second part of the paper focuses on the usage of the multivariate distributions
in PROC MCMC and discusses newly implemented conjugate sampling algorithms that improve the performance of
PROC MCMC.

THE RANDOM STATEMENT

The RANDOM statement simplifies the specification of the random-effects parameters—the 8, in Equation (2)—in an
MCMC procedure program. PROC MCMC assumes a priori that the random-effects parameters within a cluster share
the same prior distribution 7(8) and that they are independent of each other. You can have multiple random effects in a
model with each having its own prior distribution; this amounts to using multiple RANDOM statements. Once a random
effect is defined in the program, it can enter the model on the observational level, regardless of the type of the model
(linear or nonlinear) that is being used in the program.

The syntax of the the RANDOM statement in PROC MCMC is similar to the syntax of the RANDOM statement in the
NLMIXED procedure. The statement defines the random effects, which you can indicate using an arbitrary name as
long as it does not conflict with the names for model parameters or data set variables that are used in the program. The
statement has the following syntax:

RANDOM random-effect ~ distribution SUBJECT =variable < options> ;

The random effect defined by the statement can be either a single effect or an array of effects. You must specify a
prior distribution for the random effect. Not all distributions that are supported in the PRIOR statement or the MODEL
statement can be used in the RANDOM statement. Table 1 lists a set of prior distributions that can be used. Unlike their
counterparts in the PRIOR statements, these distributions do not take optional lower- or upper-bound specifications.

Table 1 Valid Distributions in the RANDOM Statement

Distribution Definition
beta(x,8) Beta distribution with shape parameters o and g
binary(p) Binary distribution with probability of success p

gamma(a, scale|iscale= 1) Gamma distribution with shape a and scale or inverse-scale A

igamma(a, scaleliscales=1) Inverse-gamma distribution with shape a and scale or inverse-scale A

normal(u, sd|var|prec= 1) Normal distribution with mean p and standard deviation or variance or preci-
sion A

mvn(u, X) Multivariate normal distribution with mean p and covariance X

You must specify the SUBJECT= option, which declares a data set variable that indicates the random effects’ cluster
membership. The SUBJECT= variable can be either a numeric variable or character literal, and it does not need to be
sorted.

During the setup stage of the simulation, PROC MCMC first determines the number of random-effects parameters,
which is the number of unique values in the SUBJECT= variable. Then PROC MCMC creates the random-effects
parameters and updates them conditionally in the simulation. Using the SUBJECT= option bypasses the need to
account for the number of clusters in the data set variable ahead of the time.

The MCMC procedure assumes that all random-effects parameters defined by the same RANDOM statement are con-
ditionally independent of each other, given the data and other parameters in the model. Conditional independence
is not assumed between random-effects parameters that are defined by different RANDOM statements. This condi-
tional independence assumption enables PROC MCMC to identify observations that are uniquely associated with each
random-effects parameter and use that information to construct the object function (the logarithm of the conditional
posterior density function) for every random-effects parameter.

For continuous random effects, PROC MCMC uses a single-dimensional random walk Metropolis algorithm based on
a normal proposal distribution to draw the posterior samples. For discrete random effects, such as random effects that
have a binary prior, PROC MCMC uses an inverse cumulative distribution function sampling method. The objective
function used in the Metropolis algorithm typically involves only a fraction of the input data set, which reduces the
computational cost and shortens the simulation time. In SAS/STAT 9.3, the MCMC procedure requires only one pass



through the data set to update all random-effects parameters from one RANDOM statement. Previous versions required
the number of passes through the data set to be equal to the number of unigue PARMS statements that are used to
define the random-effects parameters.

Hyperparameters in the prior distribution of a random effect can be model parameters, data set variables, or functions
of both. However, the hyperparameters must remain constant within each subject group—a meaningful model cannot
center a random-effects parameter at two different mean values.

Although multiple RANDOM statements are supported, the hyperparameters of one random effect cannot be other
random effects that are declared in a different RANDOM statement. For example, the following statements are not
allowed because the random effect g appears in the distribution for the random effect u:

random g ~ normal (0,var=s2g) subject=day;
random u ~ normal (g, var=s2u) subject=year;

You use the INITIAL= option to specify initial values of the random-effects parameters, the MONITOR= option to output
analysis for selected parameters, and the NAMESUFFIX= option to specify how the names of the random-effects
parameters are internally created. More details can be found in the section “RANDOM Statement” in the chapter “The
MCMC Procedure” in SAS/STAT 9.3 User’s Guide.

LOGISTIC RANDOM-EFFECTS MODEL

Consider the seeds data set from Crowder (1978) that was also analyzed by Breslow and Clayton (1993). The data
set is a 2 x 2 factorial layout with two types of seeds, O. aegyptiaca 75 and O. aegyptiaca 73, and two root extracts,
bean and cucumber. The experiment included five or six replicates for each combination of seeds and root extracts.
In each batch, the number of germinated seeds (variable r) and total number of seeds (variable n) are recorded. The
independent variables are seed and extract.

The following statements create the data set:

data seeds;
input r n seed extract @Q@;

ind = _N_;

datalines;
10 39 0 O 23 62 0 O 23 81 0 O 26 51 0 O
17 39 0 O 5 6 0 1 53 74 0 1 55 72 0 1
32 51 0 1 46 79 0 1 10 13 0 1 8 16 1 O
10 30 1 O 8 28 1 O 23 45 1 O 0 4 1 O
3 12 1 1 22 41 1 1 15 30 1 1 32 51 1 1
3 7 1 1

’

Output 1 shows the success probabilities of germinated seeds for the 21 experiments. The symbol “o” represents
results from the experiments that use O. aegyptiaca 75 and bean, “+” represents O. aegyptiaca 75 and cucumber, “x”
represents O. aegyptiaca 73 and bean, and “A” represents O. aegyptiaca 73 and cucumber.
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Output 1 Success Probabilities of Germination
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Crowder (1978) noted heterogeneity of the proportions between replicates. In other words, the amount of variability
within each batch exceeds that allowed by a binomial model. To account for excessive variation, Breslow and Clayton
(1993) suggested a generalized linear random-effects model with observational-level random effects.

The likelihood is a binomial distribution:
r; ~ binomial(n;, p;)
A logit function links the covariates of each observation (seed and extract) to the probability of success,

i = PBo+ P1-seed; + B -extract; + B3 - seed; - extract;
Di logistic(u; + 6;)

where §; is assumed to be an i.i.d. random effect with a normal prior:
8; ~ normal(0, var = o)

The four 8 regression coefficients and the standard deviation o2 in the random effects are model parameters; they are
given priors as follows:

7(Bo, B1, P2, B3) o« normal(0,sd = 1000)

02 ~ igamma(shape = 0.01,scale = 0.01)



The following statements fit the model:

proc mcmc data=seeds outpost=postout seed=332786 nmc=20000
stats=(summary intervals) diag=none;
parms beta0 0 betal 0 beta2 0 beta3 0 s2 1;
prior beta: ~ normal (0, sd=1000);
prior s2 ~ igamma(0.01, s=0.01);
w = betal + betal*seed + beta2xextract + beta3xseedxextract;
random delta ~ normal (0, var=s2) subject=ind;
pPi = logistic(w + delta);
model r ~ binomial(n = n, p = pi);
run;

The PROC MCMC statement specifies the input and output data sets, sets a seed for the random number generator,
and requests a large simulation size. The procedure computes the posterior summary and interval statistics, and turns
off all the convergence diagnostics. The PARMS statement declares the model parameters and assigns initial values.
There are four regression coefficients (beta0, betal, beta2, and beta3) and a variance parameter (s2). The PRIOR
statements specify the prior distributions for 8 and o2.

The symbol w calculates the regression mean, and the RANDOM statement specifies the random effect, with a normal
prior distribution, centered at 0 with variance o2 (s2). The SUBJECT= option indicates the group index for the random-
effects parameters. The symbol pi is the logit transformation. The MODEL statement specifies the response variable r
as a binomial distribution with parameters n and pi.

Output 2 shows part of the output from this analysis:

Output 2 Model Parameters Information

Parameters
Sampling Initial
Block Parameter Method Value Prior Distribution
1 s2 Conjugate 1.0000 igamma (0.01, s=0.01)
2 betal N-Metropolis 0 normal (0, sd=1000)
betal 0 normal (0, sd=1000)
beta2 0 normal (0, sd=1000)
beta3 0 normal (0, sd=1000)

The “Parameters” table lists the sampling block information, the name of the model parameters, sampling algorithms
used, initial values, and their prior distributions. The conjugate sampling algorithm (see the section “CONJUGATE
SAMPLING”) is used to draw the posterior samples of s2 and random walk Metropolis for the regression parameters.

Output 3 Random-Effects Parameters Information

Random Effects Parameters
Parameter Subject Levels Prior Distribution

delta ind 21 normal (0, var=s2)

The “Random Effects Parameters” table in Output 3 lists the name of the random effect, the subject variable, and the
number of distinct levels in the subject variable. The total number of random-effects parameters in this model is 21.
The prior is a normal distribution that centers at 0 and has a variance parameter s2.

Output 4 lists the posterior summary statistics of all the model parameters.



Output 4 Posterior Summary and Interval Statistics of the Model Parameters

The MCMC Procedure

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%
betal 20000 -0.5546 0.2037 -0.6844 -0.5497 -0.4301
betal 20000 0.0679 0.3241 -0.1455 0.0666 0.2892
beta2 20000 1.3640 0.2934 1.1744 1.3539 1.5429
beta3 20000 -0.8237 0.4644 -1.1209 -0.8215 -0.5130
s2 20000 0.1192 0.1023 0.0482 0.0929 0.1609

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

betal 0.050 -0.9597 -0.1310 -0.9514 -0.1283
betal 0.050 -0.5719 0.6872 -0.5719 0.6835
beta2 0.050 0.8070 1.9912 0.7707 1.9445
beta3 0.050 -1.7778 0.1026 -1.6803 0.1620
s2 0.050 0.00811 0.3829 0.00190 0.3139

The “Posterior Summaries” and “Posterior Intervals” tables in Output 4 list the posterior summary and interval statistics.
You can see a rather significant regression coefficient estimate for extract, and a less significant effect for seed and its
interaction with extract. By default, PROC MCMC does not output analysis for the random-effects parameters. That
is why you do not see posterior summary statistics of delta in the “Posterior Summaries” table. Use the MONITOR=
option to output relevant analyses, as illustrated in the following statement:

random delta ~ normal (0, var=s2) subject=ind monitor=(delta);

Output 5 lists the posterior summary statistics of all 21 random-effects parameters.

Output 5 Posterior Summary and Interval Statistics of the Random-Effects Parameters

The MCMC Procedure
Posterior Summaries
Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%
delta 1 20000 -0.2169 0.2684 -0.3695 -0.1812 -0.0333
delta_2 20000 0.0138 0.2369 -0.1253 0.00907 0.1496
delta 3 20000 -0.2188 0.2437 -0.3711 -0.2005 -0.0523
delta 4 20000 0.3052 0.2717 0.1164 0.2791 0.4687
delta_5 20000 0.1309 0.2587 -0.0352 0.1083 0.2797
delta_6 20000 0.0793 0.3297 -0.1145 0.0424 0.2586
delta 7 20000 0.0639 0.2356 -0.0825 0.0526 0.2024
delta_ 8 20000 0.1959 0.2450 0.0338 0.1746 0.3449
delta_9 20000 -0.1519 0.2567 -0.2964 -0.1238 0.00920
delta_10 20000 -0.2843 0.2559 -0.4356 -0.2543 -0.1016
delta_11 20000 0.0939 0.2955 -0.0855 0.0756 0.2573
delta_12 20000 0.1478 0.2994 -0.0535 0.1213 0.3189
delta_13 20000 -0.0794 0.2662 -0.2397 -0.0693 0.0789
delta_ 14 20000 -0.1431 0.2774 -0.3009 -0.1130 0.0262
delta_15 20000 0.2719 0.2877 0.0688 0.2339 0.4404
delta_16 20000 -0.1566 0.3326 -0.3336 -0.1227 0.0479
delta_17 20000 -0.2471 0.3276 -0.4348 -0.1886 -0.0218
delta_18 20000 0.0473 0.2535 -0.0981 0.0405 0.1969
delta_19 20000 -0.00976 0.2646 -0.1592 -0.00728 0.1378
delta_20 20000 0.2486 0.2761 0.0448 0.2211 0.4179
delta_21 20000 -0.0508 0.3084 -0.2212 -0.0317 0.1260

You can use the following syntax to select a subset of the random-effects parameters:
random delta ~ normal (0, var=s2) subject=ind monitor=(delta_1l delta 5-delta 9);

If you want to keep track of functions of the random-effects parameters (such as the variable pi for each subject),
you need to allocate an array, use programming statements to store the functional values in that array, and use the
MONITOR= option in the PROC MCMC statement to output analyses for or save the posterior samples of these array
values. A call of monitor=(pi) does not work because PROC MCMC does not know which of the pi values you want



to monitor. During the simulation, PROC MCMC internally replaces the variable delta with the appropriate random-
effects parameter at each observation as it steps through the data set. Therefore, at each iteration, there are 21
different values of pi. In order to monitor all of them, you need to allocate an array and store every value.

The following program illustrates such a usage:

proc mcmc data=seeds outpost=postout seed=332786 nmc=20000
stats=(summary intervals) diag=none monitor=(pi_ary);
array pi_ary[21];
parms beta0 0 betal 0 beta2 0 beta3 0 s2 1;
prior beta: ~ normal (0, sd=1000);
prior s2 ~ igamma(0.01, s=0.01);
w = beta0 + betal*seed + beta2xextract + beta3xseedxextract;
random delta ~ normal (0, var=s2) subject=ind;
pi = logistic(w + delta);
pi_aryl[ind] = pi;
model r ~ binomial(n = n, p = pi);
run;

The ARRAY statement allocates an array variable pi_ary of size 21, the number of random-effects parameters. In the
programming statements, pi_ary[ind] = pi stores the value of pi in the ind-th cell for each observation. For this
statement to work, the subject index variable ind must have an integer value (1, 2, 3, and so on). If the SUBJECT=
variable in the RANDOM statement for delta is a character variable, then you must create a matching integer index in
the input data set and use the numeric index variable in the array. Lastly, the MONITOR= option in the PROC MCMC
statement monitors all elements of pi_ary.

Output 6 shows the observed proportion and the fitted values from two different models: a logistic regression without the
random effects and the logistic random-effects model. The fitting of a logistic regression is relatively straightforward—if
you take out the RANDOM statement and the prior for s2 in the previous program, you are left with a program that fits
a logistic regression with fixed-effects parameters only.

The following program shows how to fit a fixed-effects logistic regression:

proc mcmc data=seeds outpost=postoutl seed=332786 nmc=20000
stats=(summary intervals) diag=none;
ods output postsummaries = ps postintervals=pi;
parms beta0 0 betal 0 beta2 0 beta3 0;
prior beta: ~ normal (0, sd=1000);
w = betal + betal*seed + beta2xextract + beta3xseedxextract;
pi = logistic(w);
model r ~ binomial(n = n, p = pi);
run;

Output 6 compares observed values (o) and fitted values from two different models: logistic regression (O) and random-
effects logistic regression (x). The vertical bars are the 95% highest posterior density intervals of the two models.



Output 6 Comparing Observed and Fitted Values from Two Different Models
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Output 6 indicates that a logistic regression with only fixed-effects parameters fails to capture all the within-group
variability. The model predicts a constant success probability for all experiments that use the same seed and root
extract. On the other hand, the random-effects model can capture this variability, and there is also a clear shrinkage
effect of the random-effects estimates towards the group means (the x are all closer to the O than to the o).

REGENERATING DIAGNOSTICS PLOTS

If you want to examine the convergence diagnostics of some of the random-effects parameters, you can use the
MONITOR= option in the RANDOM statement. Then PROC MCMC produces a visual display of the posterior samples.
If you forgot to include the MONITOR= option in the initial program run, you can use the %TADPIot autocall macro after
the fact to regenerate the same display.

Autocall macros are macros that are defined in libraries that SAS supplies; they are automatically included so that you
can use them without having to define or include them in your programs. The %TADPIlot macro requires you to specify
two arguments: an input data set (such as the output data set from a PROC MCMC run) and a list of variables that you
want to plot. The macro generates the following three default diagnostics plots in a panel for every variable on the list:
the trace plot, the autocorrelation plot, and the kernel density plot.

The following statement calls the % TADPIlot macro and generates a diagnostics plot for the random-effects parameter
delta_7, which is shown in Output 7:

%tadplot (data=postout, var=delta_ 7);
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Output 7 Regenerated Diagnostics Plots for delta_7
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The diagnostics plot indicates good mixing for the random-effects parameter delta_7.
The following statement shows how to create convergence diagnostics plots for all the random-effects parameters:
%$tadplot (data=postout, var=delta_ :);

The colon (:) is a shorthand for all variables that start with delta_.

CATERPILLAR PLOTS

The caterpillar plot is a side-by-side bar plot of the 95% equal-tail posterior intervals for multiple parameters. Typically,
you use the plot to visualize and compare the posterior distributions of a large number of parameters, where it could be
confusing or even difficult to dissect differences if you choose to overlay the kernel densities over each other. Random-
effects models tend to have large numbers of random-effects parameters, and you can use the %CATER autocall macro
to create a caterpillar plot of these parameters.

The %CATER macro’s syntax is identical to that of the %TADplot macro: you specify the name of the input data set and
a list of variable names.

The following statement takes the output from the random-effects analysis and generates a caterpillar plot of all the
random-effects parameters:

%CATER (data=postout, var=delta:);

Output 8 is a caterpillar plot of the random-effects parameters delta_1—delta_21.
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Output 8 Caterpillar Plot of the Random-Effects Parameters
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Dots on the caterpillar plots are the posterior mean estimates for each of the parameters, and the vertical line in the
middle of the graph is the overall mean, which is very close to 0. The figure shows that all random-effects parameters
have posterior intervals that cover 0 and indicates that these parameter estimates do not significantly deviate from 0.
However, this does not imply that a fixed-effects model fits the data as well as the random-effects model. The random-
effects model accounts for variation between clusters (on the observational level in this analysis), something that a
fixed-effects model cannot achieve. You can see this effect clearly in Output 6: on one hand, all the 95% predictive
probabilities from the random-effects model cover the predicted mean from the logistic regression with only fixed effects
(random effects that are close to 0); on the other hand, the random-effects model produces more suitable prediction
intervals that vary across observations and account for overdispersion.

MULTIVARIATE DISTRIBUTIONS

A new feature of the MCMC procedure in SAS/STAT 9.3 is that you can specify array-based parameters and multivariate
distributions in the prior or likelihood function. This section presents an overview of supported distributions and basic
steps to set up a multivariate analysis.

Table 2 lists the multivariate distributions that you can use in PROC MCMC. All distributions are supported in the
MODEL statement, meaning that you can use them to construct your likelihood function. All except the multinomial dis-
tribution are supported in the PRIOR and HYPERPRIOR statements. The restriction for the PRIOR and HYPERPRIOR
statements implies that you cannot directly specify a multinomial prior distribution for a parameter. You can still declare
a multinomial prior by using the general function and SAS programming statements that use the 1logmpdfmultinom
function.

11



Table 2 Multivariate Distributions

Distribution  Definition

dirichlet(e) Dirichlet distribution with parameter vector «, which must be a one-dimensional
array of length greater than 1

iwish(v, S) Inverse Wishart distribution with v degrees of freedom and symmetric positive def-
inite scale array S
mvn(u, X) Multivariate normal distribution with mean p and covariance X

multinom(p) Multinomial distribution with probability vector p

You can apply a multivariate distribution only on either an array-based parameter (in the PRIOR or HYPERPRIOR
statement) or an array that stores data set variables (in the MODEL statement).

The following example shows required steps for doing a multivariate analysis. Suppose that you are interested in
estimating the mean and covariance of multivariate data using the following multivariate normal model:

() e ) == (2 22)
X2 1%} 021 022

You use the following independent prior on x and X:

0 100 O
wo (o= (0) 0= (0 )
- 1 0

Y ~ |W|shart(v_2,S—(0 1))

The following statements describe the steps needed to specify multivariate distributions in PROC MCMC:

array data[2] x1 x2;

array mu[2];

array Sigmal[2, 2];

array muO[2] (0 O0);

array SigmaO[2,2] (100 0 O 100);
array S[2,2] (1 0 0 1);

parm mu Sigma;

prior mu ~ mvn(muO, SigmaO);
prior Sigma ~ iwish (2, S);

model data ~ mvn(mu, Sigma);

The first three ARRAY statements declare the data array (which stores the response variables x1 and x2), the mu array
(mean), and the Sigma array (covariance). These arrays are the random variables used in the PRIOR and MODEL
statements. The next three ARRAY statements declare hyperparameters (mu0, Sigma0, and S) which are all constant
arrays. The parentheses () after the ARRAY statement assign constant values to the arrays. The PARMS statement
declare mu and Sigma to be model parameters. The PRIOR statement specifies the desired prior distributions, and the
MODEL statement specifies the multivariate normal likelihood.

When applicable, PROC MCMC updates the multivariate parameters via conjugate sampling (see the section “CON-
JUGATE SAMPLING”). In cases where conjugacy does not apply, either a random walk Metropolis algorithm or an
independent Metropolis algorithm is used to draw samples. The sampling algorithm information can be found in the
“Parameters” table which is part of the analysis output.
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CONJUGATE SAMPLING

Conjugate prior is a family of prior distributions in which the prior and the posterior distributions are of the same family

of distributions. For example, if you model an i.i.d. random variable y; using a normal likelihood with known variance
2

o°,

yi ~ normal(u, o2)

a normal prior on w,
2
1~ normal(uo, og)

is a conjugate prior because the posterior distribution of 4 is also a normal distribution given y = {y;}, o2, 1o, and og,

—1 -1
1 -y 1
uly ~ normal —2+% . M—g+nzy , —2+%
oy O o o oy O

where n is the sample size and y is the sample avarage.

Conjugate sampling is efficient because the Markov chain can obtain samples from the target distribution directly.
When appropriate, PROC MCMC uses conjugate sampling methods to draw conditional posterior samples. Table 3
lists scenarios that lead to conjugate sampling in PROC MCMC.

Table 3 Conjugate Sampling in PROC MCMC

Family of Distributions Parameter Prior

Normal with known p Variance o2 Inverse gamma family
Normal with known p Precision t Gamma family
Normal with known scale parameter (o2, o, or 1) Mean p Normal

Multivariate normal with known X Mean p Multivariate normal
Multivariate normal with known u Covariance © Inverse Wishart
Multinomial P Dirichlet
Binomial/binary p Beta

Poisson A Gamma family

In most, but not necessarily all, cases the distribution shown in the Family column in Table 3 refers to the likelihood
function. This distribution is conditional on the parameter of interest, and it can appear in any level of the hierarchical
model, including in the random-effects level.

PROC MCMC can detect conjugacy only if the model parameter (not a function or a transformation of the model
parameter) is used in the prior and family distributions. For example, the following program leads to a conjugate
sampler being used on the parameter mu:

parm mu;
prior mu ~ n(0, sd=1000);
model y ~ n(mu, var=s2);

However, if you modify the program slightly in the following way, although the conjugacy still holds in theory, PROC
MCMC cannot detect conjugacy on mu because the parameter enters the normal likelihood function through the symbol
w:

parm mu;
prior mu ~ n(0, sd=1000);
w = mu;

model y ~ n(w, var=s2);

In this case, PROC MCMC resorts to the default sampling algorithm, which is a random walk Metropolis based on a
normal kernel.

Similarly, the following statements also prevent PROC MCMC from detecting conjugacy on the parameter mu:
parm mu;

prior mu ~ n(0, sd=1000);
model y ~ n(mu + 2, var=s2);

13



In a normal family, an often-used conjugate prior on the variance o2 is
igamma (shape=0.001, scale=0.001)

An often-used conjugate prior on the precision 7 is
gamma (shape=0.001, iscale=0.001)

Exercise caution in using the igamma and gamma distributions because PROC MCMC supports both scale and
iscale parameterizations in these distributions.

MULTIVARIATE NORMAL RANDOM-EFFECTS MODEL

This example illustrates the fitting of a multivariate normal random-effects model. The analysis was carried out by
Gelfand et al. (1990) to estimate regression coefficients for the growth of 30 young rats in a control group over a period
of five weeks. You can also think of this as a repeated measure random-effects model, where the responses are
observed over a period of few weeks.

The following statements create a SAS data set with measurements of Weight, Age (in days), and Subject.

data rats;

array days[5] (8 15 22 29 36);

input weight @@;

subject = ceil(_n_/5);

index = mod(_n_-1, 5) + 1;

age = days[index];

drop index days:;
datalines;
151 199 246 283 320 145 199 249 293 354
147 214 263 312 328 155 200 237 272 297
135 188 230 280 323 159 210 252 298 331
141 189 231 275 305 159 201 248 297 338
177 236 285 350 376 134 182 220 260 296
160 208 261 313 352 143 188 220 273 314
154 200 244 289 325 171 221 270 326 358
163 216 242 281 312 160 207 248 288 324
142 187 234 280 316 156 203 243 283 317
157 212 259 307 336 152 203 246 286 321
154 205 253 298 334 139 190 225 267 302
146 191 229 272 302 157 211 250 285 323
132 185 237 286 331 160 207 257 303 345
169 216 261 295 333 157 205 248 289 316
137 180 219 258 291 153 200 244 286 324

’

Output 9 shows the growth data of the 30 rats. Each profile is roughly linear, with a different starting weights and slightly
varying growth rates.

14



SAS Global Forum 2011 Statistics and Data Analysis

Output 9 Profiles of the Rats’ Growth Data

Growth Data of the 30 Rats
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Gelfand et al. (1990) assume a normal model for the growth rate,
Weight;; ~ normal (a,- +ﬂiAgel~j,02), i=1---30j=1---5
where i indexes rat (Subject variable), j indexes the time period, Weight;; and Age;; denote the weight and age of the

ith rat in week j, and o2 is the variance in the normal likelihood. The individual intercept and slope coefficients are
modeled as the following:

0; = (gi) ~ MVN (oc - (Zz)zc) i=1,---,30

You can use the following independent prior distributions on 8., X., and o2:

0 1000 0
fc ~ MVN (’“’ = (0),20 =( 0 1000))

Y. ~ iwishart (p =2,S=p- (0'(())1 1%))

02 ~ igamma (shape = 0.01,scale = 0.01)
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The following statements fit this multivariate normal random-effects model:

proc mcmc data=rats nmc=10000 outpost=postout
seed=17 init=random;
ods select Parameters REParameters PostSummaries;
array theta[2] alpha beta;
array theta_c[2];
array Sig c[2,2];
array muO[2];
array Sig0[2,2];
array S[2,2] (0.02 0 0 20);

begincnst;

call zeromatrix (muO);

call identity(SigO0);

call mult (Sig0, 1000, SigO);
endcnst;

parms theta c Sig c {121 0 0 0.26} var_y;
prior theta_c ~ mvn(muO, Sig0);

prior Sig_c ~ iwish(2, S);

prior var_y ~ igamma(0.01, scale=0.01);

random theta ~ mvn(theta_c, Sig c) subject=subject
monitor=(alpha_ 9 beta_9 alpha_25 beta_25);
mu = alpha + beta *x age;
model weight ~ normal (mu, var=var_y);
run;

The ODS SELECT statement displays information about model parameters, random-effects parameters, and the pos-
terior summary statistics. The ARRAY statements allocate memory space for the multivariate parameters and hyper-
parameters in the model. The parameters are 6 (theta, where the variable name of each element is alpha or beta), 6.
(theta_c), and X, (Sig_c). The hyperparameters are uqg (mu0), X¢ (Sig0), and S (S).

To assign a constant hyperparameter array, you can either use the parentheses ( )—for example, in the case of S—or
you can use programming statements. If you use programming statements to set constant arrays, it is important to
enclose the statements within the BEGINCNST/ENDCNST statements to reduce unnecessary computation. In the
programming statement, you can either set an array to be 0 (such as the case with the parameter mu0 using call
zeromatrix) or a diagonal matrix (such as the case with the parameter Sig0 using call identity andcall mult
subroutine calls).

The PARMS statement declares model parameters and assigns initial values to Sig_c using braces { }. The other two
parameters (theta_c and theta_c) are left uninitialized, and PROC MCMC generates random values from their prior
distribution at the beginning of the simulation. The PRIOR statements specify the prior distributions. The RANDOM
statement defines an array random effect theta and specifies a multivariate normal prior distribution. The SUBJECT=
option indicates cluster membership for each of the random-effects parameters. The MONITOR= option monitors the
individual intercept and slope coefficients of subjects 9 and 25.

Output 10 Parameters and Random-Effects Parameters Information Tables

The MCMC Procedure
Parameters

Array Sampling Initial

Block Parameter Index Method Value Prior Distribution

1 theta cl Conjugate -4.5834 MVNormal (muO, SigO0)
theta_c2 5.7930

2 Sig cl [1,1] Conjugate 121.0 iwishart (2, S)
Sig_c2 [1,2] 0
Sig_c3 [2,1] 0
Sig_c4 [2,2] 0.2600

3 var_y Conjugate 2806714 igamma(0.01, scale=0.01)

Random Effects Parameters
Parameter Subject Levels Prior Distribution

theta subject 30 MVNormal (theta_c, Sig_c)
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Output 10 displays the “Parameters” and “Random Effects Parameters” information tables. The Parameter column in
the “Parameters” table lists element names of array parameters, as opposed to the names of array parameters. For
example, you see theta_c1 and theta_c2 instead of theta. There is a new Array Index column in the same table, which
lists the index reference of the elements in the 2-by-2 array parameters (Sig_c). The sampling algorithms used in this
simulation for model parameters are all conjugate method, and the last two columns of the table list initial values and
prior distributions. Note that the variable var_y is given an unusually large initial value. Scale parameters that are in
the far tail of the distribution could lead to computational problems, such as convergence issues. You can always start
the Markov chain at a more reasonable place if you think that the chain is not converging well. The “Random-Effects
Parameters” table shows that the total number of random-effects parameters is 30.

Output 11 Multivariate Normal Random-Effects Model

The MCMC Procedure
Posterior Summaries
Standard Percentiles

Parameter N Mean Deviation 25% 50% 75%
theta_cl 10000 105.9 2.2768 104.4 105.9 107.5
theta_c2 10000 6.2006 0.1933 6.0730 6.2005 6.3268
Sig_cl 10000 110.0 45.0691 79.1442 103.2 133.4
Sig_c2 10000 -1.3895 2.2853 -2.6703 -1.2236 0.0374
Sig_c3 10000 -1.3895 2.2853 -2.6703 -1.2236 0.0374
Sig_c4 10000 1.0523 0.2983 0.8409 1.0008 1.2080
var_y 10000 37.4037 5.7093 33.4374 36.7871 40.8374
alpha 9 10000 119.4 5.8922 115.5 119.4 123.3
alpha 25 10000 86.6763 6.2424 82.6208 86.5522 90.8919
beta_9 10000 7.4628 0.2491 7.2932 7.4622 7.6230
beta_25 10000 6.7747 0.2633 6.5920 6.7855 6.9507

Output 11 displays posterior summary statistics for model parameters and the random-effects parameters for subjects 9
and 25. The posterior estimates Sig_c indicate that the random slopes and random intercepts are negatively correlated,
meaning that heavier rats at the beginning of the trial tend to experience slower weight gain over the course of the time.
This claim is supported in Output 9, which shows that a number of rats have growth curves that cross each other.
Output 11 also shows a substantial difference in the intercepts and growth rates between the rats 9 and 25.

A quick %CATER macro call on the random intercepts (Output 12) shows uneven growth rates across the group.

%cater (data=postout, var=beta_ :);
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Output 12 Caterpillar Plot of the Random Intercepts

Caterpillar Plot
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Rat number 9 seems to have the fastest growth rate and rat number 4 has the slowest. This result illustrates another
advantage of the random-effects models: a fixed-effects model focuses on the coefficient effects after averaging subject-
wise or cluster-wise differences, whereas a random-effects model can help identify groups that have unusual features,
such as extremely high or low growth rates among the rats.

POSTERIOR PREDICTION SIMULATION

Suppose that you are interested in drawing samples from the posterior predictive distribution of the multivariate random-
effects model on subjects 4 and 9 (the rats that have the slowest and fastest growth rate) at a future time (Age = 43
days). You can use the PREDDIST statement, which is available in SAS/STAT 9.22 and later.

The PREDDIST statement creates a new SAS data set that contains random samples from the posterior predictive
distribution of the response variable. The posterior predictive distribution is the distribution of unobserved observations
(prediction) conditional on the observed data. Let y be the observed data, X be the covariates, 6 be the parameter, and
Ypred be the unobserved data. The posterior predictive distribution is defined to be the following:

P(ypred|ysx) = /p(ypred’9|ysx)d9
— [ PWpreq!.y-X0p(6ly. X)a8

With the assumption that the observed and unobserved data are conditionally independent given 6, the posterior
predictive distribution can be further simplified as the following:

Ppreal-X) = [ Ppreal®)p(6ly. X6
The posterior predictive distribution is an integral of the likelihood function P(ypred|9) with respect to the posterior

distribution p(6]y). The PREDDIST statement generates samples from a posterior predictive distribution based on
draws from the posterior distribution of 6.
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The PREDDIST statement works only on response variables that have standard distributions, and it does not support
either the GENERAL or DGENERAL function. You can specify multiple PREDDIST statements.

The statement has the following syntax:

PREDDIST OUTPRED=SAS-data-set < COVARIATES=SAS-data-set> < NSIM=n>
< STATISTICS=0ptions > ;

The OUTPRED-= option creates an output data set that stores the posterior predictive samples. The COVARIATES=
option names the SAS data set that contains the sets of explanatory variable values for which the predictions are
established. The NSIM= option specifies the number of simulated predicted values. And the STATISTICS= option
specifies options for calculating posterior statistics.

The following programming statements create a data set (WeekSix) that has two observations, with a different SUB-
JECT value, indicating that you want to make a prediction on individual rat number four and number nine. A fixed AGE
value of 43 (days) is used for each observation.

data WeekSix;
age = 43;
subject = 4; output;
subject = 9; output;
run;

The following statements fit the model described previously in the “MULTIVARIATE NORMAL RANDOM-EFFECTS
MODEL” section, request prediction, and save the posterior predictive mean estimates to the data set ps:

title 'Multivariate Normal Random-Effects Model';
proc mcmc data=rats nmc=10000 outpost=postout
seed=17 init=random stats=summary diag=none;
ods output predsummaries=ps;
array theta[2] alpha beta;
array theta_c[2];
array Sig c[2,2];
array muO[2] (0 0);
array Sig0[2,2] (1000 0 O 1000);
array S[2,2] (0.02 0 0 20);

parms theta_c Sig c {121 0 0 0.26} var_y;
prior theta_c ~ mvn(muO, Sig0);

prior Sig_c ~ iwish(2, S);

prior var_y ~ igamma(0.01, scale=0.01);

random theta ~ mvn(theta_c, Sig c) subject=subject;

mu = alpha + beta * age;

model weight ~ normal (mu, var=var_y);

preddist outpred=WeekSixPred covariates=WeekSix;
run;

The PREDDIST statement invokes the prediction capability, uses the WeekSix data set, and saves the posterior pre-
dictive samples to the WeekSixPred data set.

The following statements combines the ps data set that stores posterior predictive values for the two rats at week 6 with
their corresponding observations in the original rats data set, and generates a prediction plot using PROC SGPLOT.
The result is shown in Output 13:

data predmn;
merge ps (rename=(mean=weight)) weeksix;
keep weight subject age;

run;

data pred;
set rats(where=(subject in (4 9))) predmn;
run;

title 'Predicted Growth of the 4th and the 9th Rats’';
proc sgplot data=pred;
xaxis label="Age in Days" values=(8 15 22 29 36 43) grid;
yaxis label="Weight in Grams";
series x=age y=weight /group=subject markers
lineattrs=(color=black)
markerattrs=(color=black symbol=circlefilled size=4);
run;

19



Output 13 shows the growth profile and prediction for the two rats of interest. The first five data points are the observed
data, and the sixth point (day 43) is the predicted growth.

Output 13 Plots of Observed Growth and Predicted Growth

Predicted Growth of the 4th and the 9th Rats
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As expected, the predicted weight discrepancy in week 6 is larger than that in week 5, due to different random slope
estimates for the rats. If you think that there is nonlinearity in the data and that a linear growth model is not sufficient to
capture all the variability, you can consider, among other possibilities, a logistic nonlinear mixed model (Lindstrom and
Bates 1990 and Pinheiro and Bates 1995). You can fit those types of models by modifying linear regression code in
PROC MCMC to accommodate nonlinearity.

CONCLUSION

In previous SAS/STAT releases, the MCMC procedure required more programming for fitting a random-effects model
or specifying a multivariate distribution. In some cases (such as models with a large number of random-effects param-
eters or multivariate analysis that involves covariance matrices), the MCMC procedure might experience convergence
problems in addition to sampling difficulties. In SAS/STAT 9.3, PROC MCMC offers major enhancements in both areas.

The RANDOM statement simplifies the specification of the random-effects parameter in a model by eliminating the
need to predetermine cluster levels and allocate array memory to accommodate these parameters. The statement also
significantly improves the computational and convergence performance, because it requires only a single pass through
the data set to update all random-effects parameters from one RANDOM statement.

You can now directly specify multivariate distributions in PROC MCMC. The array-based syntax is intuitive, and it
simplifies coding for multivariate analysis. The MCMC procedure implements conjugate sampling algorithms to solve
some known sampling difficulties, such as drawing posterior samples from positive definite covariance parameters.
Finally, the PREDDIST statement, available in SAS/STAT 9.22 and later, facilitates posterior predictions in a wide range
of Bayesian models.

The MCMC procedure continues to be an active and crucial area of SAS/STAT development; future releases of PROC
MCMC will provide additional features that improve the performance and usability of the software.
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CONTACT INFORMATION

The MCMC procedure requires SAS/STAT 9.2 and later. The PREDDIST statement requires SAS/STAT 9.22 and
later. The RANDOM statement, multivariate distributions, and conjugate sampling algorithms require SAS/STAT 9.3.
Complete documentation for the MCMC procedure, in both PDF and HTML format, can be found on the Web at http:
//support.sas.com/documentation/onlinedoc/stat/indexproc.html.

You can find additional coding examples at http://support.sas.com/rnd/app/examples/index.html.
Your comments and questions are valued and encouraged. Contact the author at:

Fang Chen, SAS Institute Inc.,
SAS Campus Drive, Cary, NC 27513
Email: fangk.chen@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.
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