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Missing Data Overview 
• Missing data are ubiquitous in applied quantitative 

studies 

– Don’t know/don’t remember/refused responses on 
cross-sectional surveys and self-administered paper 
surveys 

– Skip patterns and other forms of planned missingness 

• 3-form design; 2-method measurement design (Graham et al, 
Psychological Methods, 2006) 

– Interviewer error/A-CASI programming errors or 
omissions. 

– Longitudinal loss to follow-up 
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Preventing Missing Data 

• Prevention is the best first step 

– A-CASI, CAPI, etc. (with lots of testing!) 

– Rigorous retention protocols for participant 
tracking, etc. 

– Diane Binson’s, Bill Woods’, and Lance Pollack’s 
work with flexible interviewing methods.  

• Asking longitudinal study participants if they 
anticipate barriers to returning for follow-up 
visits, then problem solving those issues. See: 
Leon, Demirtas, Hedeker, 2007, Clinical Trials 
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Missing Data Mechanisms 
• What mechanisms lead to missing data? 

• Rubin’s taxonomy of missing data mechanisms 
(Rubin (1976), Biometrika): 

– MCAR: Missing Completely at Random 

– MAR: Missing at Random 

– NMAR: Not Missing at Random 

• Also known as MNAR (Missing Not at Random) 

– Good articles that spell this out: 

• Schafer & Graham, 2002, Psychological Methods 

• Graham, 2009, Annual Review of Psychology 
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MCAR, MAR, NMAR 
• From Schafer & Graham, 2002, p. 151: One way to think 

about MAR, MCAR, and NMAR: If you have observed data 
X and incomplete data Y, and assuming independence of 
observations: 
– MCAR indicates that the probability of Y being missing for a 

participant does not depend her values on X or Y. 

– MAR indicates that the probability of Y being missing for the 
participant may depend on her X values but not her Y 
values. 

– NMAR indicates that the probability of Y being missing 
depends on the participant’s actual Y values.  

– See appendix for alternative definitions of these terms.  
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Missing Data Mechanisms: Example   

• Measuring systolic blood pressure (SBP) in January and February 
(Schafer and Graham, 2002, Psychological Methods, 7(2), 147-177)  

– MCAR: Data missing in February at random, unrelated to SBP 
level in January or February or any other variable in the study; 
missing cases are a random subset of the original sample’s 
cases.  

– MAR: Data missing in February because the January 
measurement did not exceed 140 - cases are randomly missing 
data within the two groups: SBP > 140 and SBP <= 140.  

– NMAR: Data missing in February because the February SBP 
measurement did not exceed 140. (SBP taken, but not recorded 
if it is <= 140.) Cases’ data are not missing at random.  
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Occurrence of Missingness Types 
• MCAR: Missing Completely at Random 

– A very stringent assumption unlikely to be met in practice 
– Example: computer failure loses some cases’ data but not others 

• MAR: Missing at Random 
– Much more likely to be met in practice, especially in social and 

behavioral research where variables tend to be correlated with 
each other and with missingness (Schafer & Graham, 2002, 
Psychological Methods) 

• NMAR: Not Missing at Random 
– Unknown. MCAR vs. MAR can be formally tested via statistical 

tests, but MAR vs. NMAR cannot be tested.  
– Inclusion of measures during the study design phase that are likely 

to be correlated with subsequent data missingness can help to 
minimize NMAR missingness.  

– Some NMAR missingness may be inevitable, however.  
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Ad-hoc Approaches to  
Handling Missing Data 

• Listwise deletion (a.k.a. complete-case analysis)  
• Standard statistical programs typically delete the whole case from 

an analysis if one or more variables’ values are missing and use 
only complete cases in analyses (listwise deletion) 

• Pairwise deletion (a.k.a. available-case analysis)  

• Dummy variable adjustment (Cohen & Cohen)  

• Single imputation replacement with variable or 
participant means  

• Regression  

• Hot deck 
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Listwise Deletion of Missing Data 
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Consequences of listwise deletion of missing data: 
• If missing data are due to MCAR:  

– Parameter estimates are unbiased, but standard errors are enlarged and 
power for hypothesis testing is reduced 

• If missing data are due to MAR: 
– Parameter estimates may be biased, standard errors enlarged, and 

power for hypothesis testing reduced 

• If missing data are due to NMAR:  
– Parameter estimates may be biased, standard errors enlarged, and 

power for hypothesis testing reduced 

– Allison (2002): Robust to parameter estimate bias under NMAR missing 
data for predictor variables (all regression models) and for predictor 
variables OR outcome variable in logistic models (slopes only) 



Pairwise Deletion of Missing Data 

• Use pairs of available cases for computation of any sample 
moment. 
– For computation of means and variances, use all available data 

for each variable 
– For computation of covariances, use all available data on pairs of 

variables.  

• Can lead to non-positive definite variance-covariance (i.e., 
non-invertible) matrices because it uses different pairs of 
cases for each entry.  

• More fundamentally, in regression modeling with multiple X 
variables where the sample size fluctuates across different 
pairs of variables, it is difficult to know what N to specify for 
the analysis.  

• Can lead to biased standard errors under MAR. 
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Dummy Variable Adjustment 

Advocated by Cohen & Cohen (1983). Steps:   

1. When X has missing values, create a dummy 
variable D to indicate complete case versus 
case with missing data.  

2. When X is missing, fill in a constant c  

3. Regress Y on X and D (and other non-missing 
predictors).  

• Produces biased coefficient estimates (see 
Jones’ 1996 JASA article) 
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Single Imputation Methods 

• Mean substitution - by variable or by observation  

• Regression imputation (i.e., replacement with conditional means)  

• Hot deck: Pick “donor” cases at random within homogeneous 
strata of observed data to provide data for cases with unobserved 
values.  

• These ad hoc approaches lead to biased parameter estimates 
(e.g., means, regression coefficients); variance and standard error 
estimates that are biased downwards.  
– One exception: Rubin (1987) provides a hot-deck based method of multiple 

imputation that may return unbiased parameter estimates under MAR.  

– Second exception: If the amount of missing data is very small (e.g., 5% or less), 
then it may not matter what method is used (Roth, 1994).  

• Otherwise, these methods are not recommended. 
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How should we handle missing data? 

• It turns out that MCAR is a special case of MAR, so any method that 
capably addresses MAR missing data should also be able to address 
MCAR missing data.  

• NMAR missingness can only be addressed through explicitly assuming 
a specific model for how the data became missing, which can lead to 
suboptimal results if an incorrect missingness model is specified 
(Allison, 2002).  

• There is some evidence that methods that assume MAR missingness 
may outperform ad hoc approaches, yielding less biased parameter 
estimates, even when data are missing due to NMAR (Muthén, 
Kaplan, & Hollis, 1987, Psychometrika). Therefore it may be beneficial 
to use methods that assume MAR rather than MCAR missingness and 
there is probably generally little downside in doing so.  

• Various NMAR models may be used to perform sensitivity analyses to 
evaluate parameter estimates under different missingness scenarios 
(see Appendix for a list of several popular NMAR models). NMAR 
sensitivity modeling is beyond the scope of today’s presentation; we 
will focus on methods for handling MAR missing data.  
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Methods for MAR Missingness 

• Ibrahim (JASA, 2005) reviewed four general approaches for 
handling MAR missingness and found all to perform about 
equally well: 
– Inverse probability of censoring weights (IPCW) 

– Fully Bayesian analysis 

– Full Information Maximum likelihood estimation (FIML) 

– Multiple imputation (MI) 

• A full treatment of each technique is beyond the scope of 
today’s presentation. We will concentrate on how to employ 
Stata to address missingness using full information maximum 
likelihood (FIML) today in Part 1 and, in Part 2, multiple 
imputation (MI) under the MAR assumption.  
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Maximum Likelihood (1) 

When there are no missing data:  
• Uses the likelihood function to express the probability of the 

observed data, given the parameters, as a function of the 
unknown parameter values.  

• Example:                                           where p(x,y|θ) is the 
(joint) probability of observing (x,y) given a parameter θ, for a 
sample of n independent observations. The likelihood 
function is the product of the separate contributions to the 
likelihood from each observation.  

• MLEs are the values of the parameters which maximize the 
probability of the observed data (the likelihood).  
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Maximum Likelihood (2) 
• Under ordinary conditions, ML estimates are:  

– consistent (approximately unbiased in large samples) 

– asymptotically efficient (have the smallest possible variance)  

– asymptotically normal (one can use normal theory to construct 
confidence intervals and p-values).  

• The ML approach can be easily extended to MAR 
situations : 

   

• The contribution to the likelihood from an observation 
with X missing is the marginal: g(yi|θ) = Σxp(x,yi|θ)  

– This likelihood may be maximized like any other likelihood 
function. Often labeled full-information ML (FIML) or direct ML.  
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Maximum Likelihood Demonstration (1)  
2 x 2 Table with missing data* 
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    Vote (Y=V) 

Sex (X=S)  Yes No   .   Y  N 

Male  28  45  10 (73) p11  p12 

Female  22  52  15 (74)  p21 p22 

Total  50   97   25     (147)   1 

 

Likelihood function: L(p11, p12, p21, p22) = 

 (p11)28(p12)45 (p21)22 (p22)52 (p11+p12)10 (p21+p22)15 

 

 

* From  Paul Allison, 2002, pp.  15-17   

 



Maximum Likelihood Demonstration (2)  
2 x 2 Table with missing data 
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Maximum Likelihood Demonstration (3)  

Using lEM for 2 x 2 Table 
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Input (partial) 

 

* R = response (NM) indicator 

* S = sex; V = vote;  
 

 man 2        * 2 manifest variables 

 res 1          * 1 response indicator  

 dim 2 2 2    * with two levels 

 lab R S V     * and label R 

 sub SV S     * defines these two subgroups 

  mod SV     * model for complete 

  dat [28 45 22 52   * subgroup SV  

         10 15]           * subgroup S 

 

Output (partial) 
 
*** (CONDITIONAL) PROBABILITIES *** 
 
* P(SV) *                     complete data only 
  1 1    0.1851 (0.0311)   0.1905 (0.0324) 
  1 2    0.2975 (0.0361)   0.3061  (0.0380) 
  2 1    0.1538 (0.0297)   0.1497  (0.0294) 
  2 2    0.3636 (0.0384)   0.3537  (0.0394) 
 
 
* P(R) * 
    1       0.8547 
    2       0.1453 

 



Maximum Likelihood Demonstration (4)  
Using Stata (Mata) for 2 x 2 Table 

capture log close 
log using lem_mata.log, replace 
 
// 2 by 2 table, missing values on one margin. 
// same example as solved by LEM 
// the SV matrix (col vector) includes the  
// 4 (s,v) joint probabilities and 2 marginal (s,.) 
// p is the col vector of 4 joint probabilities Pr(S=s, V=v) 
// C is the row vector to multiply p; c is the element 1 
// We impose the constraint C p = c, that is, the 4 probabilities add up to 1 
// Cc is the row vector that is passed to Mata 
 
 
mata:  // start Mata 
 
 mata clear 
 SV = (28, 45, 22, 52 , 10, 15)'  
 C = (1, 1, 1, 1) 
 c = (1) 
 Cc = (C,c) 
 void myfun(todo, p,  SV,  lnf, g, H) 
 { 
               
        lnf =SV[1]*log(p[1]) + SV[2]*log(p[2]) /// 
  + SV[3]*log(p[3]) + SV[4]*log(p[4])  
     
  lnf = lnf + SV[5]*log(p[1]+p[2]) + /// 
  SV[6]*log(p[3]+p[4]) 
         } 
 
 

 S = optimize_init() 
 
     optimize_init_evaluator(S, &myfun()) // optimize the liklihood function 

S 
     optimize_init_params(S, (.25, .25, .25, .25)) // initial values of p 
     optimize_init_constraints(S, Cc)  // constraints 
     optimize_init_argument(S, 1, SV)                             
     optimize(S) 
     optimize_result_V_oim(S) 
 
    p =  optimize(S) // estimated probabilities 
    varcov_p=optimize_result_V_oim(S) // var-cov matrix of estimates 
    var_p = diagonal(varcov_p) // variances of estimates 
    se_p = sqrt(var_p) // se's of estimates 
   
   round(p,.0001)  // print out estimated probabilities w/ 4 decimals 
   round(se_p,.0001)  // print out estimated se's  w/ 4 decimals 
 
end // exit Mata 
 
log close 
 
exit 
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Maximum Likelihood Demonstration (5)  
Using Stata (Mata) for 2 x 2 Table 

:    round(p,.0001)  // print out estimated probabilities w/ 4 decimals 

           1       2       3       4 

    +---------------------------------+ 

  1 |  .1851   .2975   .1538   .3636  | 

    +---------------------------------+ 

:    round(se_p,.0001)  // print out estimated se's w/ 4 decimals 

           1 

    +---------+ 

  1 |  .0311  | 

  2 |  .0361  | 

  3 |  .0297  | 

  4 |  .0384  | 

    +---------+ 

 

:  

: end // exit Mata 

------------------------------------------------------------------- 
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ML via SEM Programs 

• Some of the most important developments in handling non-normal and incomplete 
data arose in the latent variable (structural equation modeling or SEM) field in the 
1990s. 

• For many years, the AMOS SEM program has had a user-friendly implementation of 
FIML missing data handling suitable for use with continuous cross-sectional and 
longitudinal exogenous (X-side) and endogenous (Y-side) missing data (Some 
commands in general purpose statistical software programs can handle 
longitudinal Y-side missing data via maximum likelihood. See the appendix for more 
regarding X-side and Y-side missingness and software programs).  

• In the late 1990s, Bengt and Linda Muthén developed Mplus, a general latent 
variable modeling program that included FIML missing data handling and featured, 
among other things, the ability to model categorical and event history/survival 
outcome variables and hierarchically clustered (multilevel) data structures, with 
and without complete data, via ML.  

– Examples 3 and 4 demonstrate how to use Mplus to fit logistic regression and Cox 
regression models with incomplete covariate data.  
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Some Programs Supporting ML Analyses 
• Commercial stand-alone SEM programs (e.g., Mplus, LISREL, EQS) 
• Mx - Freeware fits a wide variety of SEMs  
• lEM Loglinear & Event history analysis with Missing data 

– Freeware MS Windows program downloadable from the Internet (Jeroen Vermunt) 

– http://members.home.nl/jeroenvermunt/ 
– Fits log-linear, logit, latent class, and event history models with categorical predictors.  

• Availability in general purpose packages (ML for all):  
• SPSS AMOS: Continuous endogenous variables via ML; binary and censored 

endogenous (Y) variables via Bayesian estimation 

• SAS PROC CALIS: Continuous endogenous (Y) variables via ML 

• Stata’s -sem- command: Continuous endogenous (Y) variables via ML, with robust 
standard error option to address non-normal and/or clustered data. These standard 
errors technically assume incomplete data arise from a mechanism in between MAR 
and MCAR (see http://www.statmodel.com/discussion/messages/22/1047.html for 
details) and may perform well in small to moderately-sized samples with non-
normality and missing data (Yuan & Bentler, 2000, Sociological Methodology, 30(1), 
165-200). Initial simulation studies show low SE bias for this estimator with MAR 
data. (See http://www.statmodel.com/download/webnotes/mc2.pdf .) 
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Example 1: FIML Linear Regression 
• The AIDS Foundation of Chicago administered a questionnaire 

to 570 HIV-positive men. Variables available for analysis include:  
• Gay harassment scale score (the outcome; n = 551) 
• Race (White, Black, Hispanic, Other; n = 569) 
• Sexual Orientation (Gay, Straight, Bi, Other; n = 548) 
• Age in years (n = 570) 
• Visited doctor in last six months? (yes; no; n = 450) 
• Months living with HIV (n = 559) 
• HIV stigma scale score (n = 552) 
• Internalized heterosexism scale score (n = 481) 
• Disclosure items: 5-point Likert (none, a few, half, most, all) 

– Close friends know HIV status (dss1; n = 557) 
– Family members know HIV status (dss2; n = 552)  

• HIV treatment beliefs scale (BMQ concerns; n = 556) 
• Social support scale (n = 562) 25 

 



Example 1: Analysis Approach 
• Research question: What are the associations of age, doctor 

visit, race, and sexual orientation with experiences of gay 
harassment?  

• If there were no missing data, how would we proceed?  
– We have a continuous outcome, gay harassment for all analyses 

considered here.   
– Continuous explanatory variable (age): Pearson or Spearman correlation 
– Binary explanatory variable (doctor visit): t-test or analogous two-group 

non-parametric test 
– Multi-category explanatory variable (race, sexual orientation): OLS 

regression; ANOVA 
– Multivariable analyses involving all of these plus other control variables: 

OLS regression/general linear modeling (GLM) framework 

• FIML analyses: Because the FIML approach is model-
based, uses all information in the likelihood, and is 
based on first- and second-order moments (i.e., means, 
variances, and covariances), the analyses are cast in the 
covariance matrix and multiple regression framework. 
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Example 1: Linear Regression 
• Step 1: Describe the data, including amounts and patterns of 

missing data 
• Step 2: Perform a few bivariate linear regression analyses 

using the default missing data handling approach in Stata’s -
regress- command 

• Step 3: Perform multivariable linear regression analyses using 
the default listwise deletion approach in Stata’s -regress- 
command 

• Step 4: Perform multivariable linear regression analyses using 
the default listwise deletion approach in Stata’s -sem- 
command (this is to show how to fit a regression model using 
-sem- and to demonstrate that the results will be highly 
similar to what was obtained in Step 3 using -regress-) 

• Step 5: Reprise the analysis from Step 4 using FIML via -sem- 
• Step 6 (optional, not discussed today): Demonstrate how to 

perform bivariate FIML analyses via -sem- (oddly, this is a bit 
more tricky than multivariable analyses) 
– In a real application, you would most likely generate a FIML-based 

covariance/correlation matrix for bivariate analyses and then 
perform multivariable regressions for multivariable analyses 
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Example 1: Linear Regression Results (1) 

• Bivariate results (pairwise deletion):  
– Age (n = 551): Negatively associated with harassment. 

– Six-month doctor visit (n = 435): Not associated with gay 
harassment.  

– Race (n = 550): Overall difference in means with Blacks and 
Hispanics reporting less gay harassment than Whites 

– Sexual orientation (n = 540): Overall difference in means with 
straight-identified persons reporting less gay-harassment than 
gay-identified individuals.  

• For simplicity, pairwise-based bivariate results are reported here. It is 
possible to obtain FIML-based bivariate results; see the do file for this 
example and our presentation from December 2012 to learn how to obtain 
FIML bivariate results using Stata.  
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Example 1: Linear Regression Results (2) 

• Multivariable results (listwise deletion; n = 340): 

– Age: Negatively associated with harassment. 

– Six-month doctor visit: Not associated with gay 
harassment.  

– Race: No overall mean difference; Blacks still report less 
gay harassment, but Hispanic comparison with Whites is 
now non-significant.  

– Sexual orientation: No overall mean difference between 
groups and no paired differences are significant.  
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Example 1: Linear Regression Results (3) 

• Multivariable results (FIML using -sem-; n = 570):  

– Age: Negatively associated with harassment. 

– Six-month doctor visit: Not associated with gay 
harassment.  

– Race: Marginally-significant overall difference in means 
with Blacks and Hispanics reporting less gay harassment 
than Whites. 

– Sexual orientation: Overall difference in means with 
straight-identified person reporting less gay-harassment 
than gay-identified individuals.  
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Example 2: Tobacco and Bars Study (1) 
• Dr. Pam Ling and her research group at the UCSF Center for Tobacco 

Control Research and Education (CTCRE) administered a brief survey 
to 1,217 young adult bar patrons in San Francisco. The design 
features clustered data from participants gathered within bars using a 
3-form survey design with planned missingness and an auxiliary 
variable. Variables available for analysis include:  
– Number of days in past 30 the participant (PPT) smoked (the outcome; n = 1145) 
– Age in years from 18-26 (n = 1217) 
– Race (White, Latino, Black, A/PI, Other; n = 1207) 
– Male gender dummy variable (n = 1217) 
– Sexual Orientation (Gay, Straight, Bi, Other; n = 1212) 
– PPT considers self a smoker (0 = no; 1 = yes; n = 858) 
– Social network smoking: Sum of ordinal items asking how many friends, partying 

companions, and coworkers smoke (n = 616) 
– Extraversion index: Sum of ordinal outgoingness items (n = 801) 

• This example demonstrates the FIML linear regression analysis of clustered 
data from a planned missingness design with an auxiliary variable, addict, 
which measures whether the PPT smokes within a half hour of getting up in 
the morning (n = 1207).  
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Three Form Design (N=1217) 
Venue  

ID 
Days smoked 

in past 30 
(continuous) 

Age  in years 
(continuous) 

Race 
(categorical) 

Male 
gender 
(binary) 

Sexual 
Orientation 
(categorical) 

Form X Yes Yes Yes Yes Yes Yes 

Form Y Yes Yes Yes Yes Yes Yes 

Form Z Yes Yes Yes Yes Yes Yes 

Do you consider 
yourself to be a 
smoker? (binary 

n=858) 

How many 
people in your 
social network 

smoke? 
(continuous 

n=616) 

Extraversion  
Index 

(continuous 
n=801) 

Auxiliary: 
Smokes within 

30 min of 
waking (Binary 

Yes/No) 

Form X Yes no Yes Yes 

Form Y no Yes Yes Yes 

Form Z Yes Yes no Yes 
32 



Example 2: Tobacco and Bars Study (2) 
• OLS regression using the standard approach is not possible because listwise 

deletion yields a data set with zero observations for the desired model.  
• The analysis is straightforward using FIML with -sem- in Stata, PROC CALIS in 

SAS, AMOS in SPSS, or any specialized SEM program like Mplus.  
• The Stata analysis addresses clustering due to participants being nested 

within recruitment sites (i.e., bars) through the use of robust standard 
errors.  

• This example also includes an auxiliary variable, addict. Auxiliary variables 
are variables that are either (a) correlated with one or more of the 
observed variables in the analysis or (b) correlated with missingness on one 
or more variables that have missing data. These variables should only be 
included in the analysis if they are strongly correlated with observed values 
or missingness of the other variables already in the analysis (see Collins et 
al., A comparison of inclusive and restrictive strategies in modern missing 
data procedures. Psychological Methods, 2001). 
– Several possible methods are available for including auxiliary variables in Stata FIML 

analyses. See http://www.stata.com/meeting/new-
orleans13/abstracts/materials/nola13-medeiros.pdf for further details.  
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Example 2: Linear Regression Results 

• There are no significant effects for age, race, male gender, and 
extraversion. 

• There is a significant overall difference for LGBT status, with gay 
participants having a lower mean number of smoking days 
relative to the straight participant reference group.  

• Self-identification as a smoker is positively associated with the 
number of days smoked.  

• More smoking occurring in one’s social network is associated 
with more days smoked.  
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Example 2: Limitations and Further Thoughts 
• The number of days smoked is not normally distributed. Parameter 

estimates should be somewhat robust to non-normality and robust 
variances help protect inferences from assumption violations. However, it 
could be beneficial to examine the robustness of the results via multiple 
imputation in which smokdays is imputed under less restrictive 
assumptions. We’ll revisit this issue in Part 2.  

• Item-level missingness: With the three-form design, there should’ve been 
roughly 800 participants per survey form, but there are only 616 for the 
networking smoking variable. Why? Some respondents endorsed “not 
applicable” for one or more items. How to handle this type of situation?   
– Restrict the sample to only those who have valid responses for all three 

variables. Loses information and restricts the inference space. 
– Model network smoking as a latent factor representing the shared variance 

among the three network items. A more complicated proposition for binary or 
ordinal items and more complex to justify and report.  

– Compute the mean of the three items rather than the sum. Equivalent to mean 
substitution and therefore assumes MCAR missingness.  

– Impute responses at the item level via MI. May not be appealing if the answers 
for those questions should actually be “not applicable”. Also, there are practical 
limitations on the number of items included in the same imputation run.  

– Two-part modeling at the item-level assuming separate “applicable” and N/A 
populations. Complex; probably not realistic for large numbers of items.  
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ML Issues and Extensions 
• Interactions between variables are handled seamlessly as part of the model.  
• Availability of some regression-type model diagnostics may be more limited 

in the ML context (e.g., observation-level predicted value-by-residual 
scatterplots). Mplus features some case-deletion diagnostics (e.g., Cook’s D) 
and, if available in software, robust standard errors may be compared with 
model-based standard errors as a crude gauge of how well normality and 
constant residual variance assumptions are met.  

• What about generalized linear models for binary outcomes, count 
outcomes, and failure time (i.e., survival) outcomes? Earlier we 
demonstrated how LEM can be used to perform ML analyses for models 
involving exclusively categorical variables. Mplus features ML estimation for 
binary, ordinal, count, and nominal (i.e., multinomial) outcomes. Mplus 
allows the user to bring binary or continuous covariates with missing values 
into the models for these outcomes, switching covariates’ status from fixed 
to random with a normal distribution. This is done by naming the variances 
and covariances of the covariates as explicit parameters to be estimated.  

• Multilevel models with missing X-variables? Mplus can perform ML 
estimation for two-level models with most outcome variable types and 
bring covariates into the model as random variables as described above.  
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Maximum Likelihood Summary (1) 

• ML advantages:  
– Provides a single, deterministic set of results appropriate 

under the MAR assumption with a single reportable N.  

– Well-accepted method for handling missing values (e.g., in 
grant proposals and manuscripts); simple to describe 

– Generally fast and convenient 

– Avoids a lot of the decision points involved in performing 
multiple imputation (see http://www.statisticalhorizons.com/ml-better-

than-mi), including the complexities of dealing with 
situations where some cases’ data need to be imputed, 
but others should have structurally missing data (e.g., 
number of pregnancies for males).  
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Maximum Likelihood Summary (2) 
• ML disadvantages:  

– Only available for some models via standard software (would 
need to program other models), though the number of models 
and programs supporting those models continues to grow 

– Because ML estimates means, variances, and covariances for all 
variables simultaneously, more care must be taken to ensure 
convergence, especially when there are large numbers of 
variables and relatively few numbers of cases 

– Parametric: may not be robust to violations of distributional 
assumptions (e.g., multivariate normality) and some of the usual 
model diagnostic tools may not be as readily available as they are 
for standard regression methods. 
• However, robust standard errors seem to work pretty well for 

inferential purposes (the bootstrap is an alternative).  
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Part 1 Conclusions 
• Planning ahead can minimize cross-sectional non-response 

and longitudinal loss to follow-up. 

• Use of ad hoc methods, while convenient, assume incomplete 
data arise from an MCAR mechanism (a fairly strict 
assumption) and can lead to biased results. 

• Maximum likelihood methods such as FIML assume MAR (a 
less stringent assumption) and are readily available for some 
models/analysis scenarios. 

• FIML/direct ML are most convenient for models that are 
supported by software and when parametric assumptions are 
met or not too badly violated.  

• For scenarios not supported by software programs with ML, 
consider multiple imputation, which we will discuss in Part 2.  

 
39 

 



Acknowledgements 
• NIMH P30 MH062246 (Morin, PI). Methods Core (Neilands, Hudes) supported 

time to prepare examples and slides. Also, NCI R01 CA141661 (Ling, PI) and 
U01 CA154240 (Ling,  PI) and P60 MD006902 (Bibbins-Domingo, PI) provided 
additional support (Neilands). 

• AIDS Foundation of Chicago: Gay harassment data 

• Pamela Ling, MD: Tobacco and bars data; three-form design table 

• Elvin Geng, MD: Africa mortality data  

• David D. Burns, MD: Early and ongoing mentoring on AMOS and FIML  

• Adam Carle, PhD: -runmplus- awareness 

• Richard Jones, Sc.D.: -runmplus- programming and support  

• Isabel Cannette, Stata Tech Support: -gsem- syntax to estimate models with 
missing data 

• Steve Gregorich, PhD: Overall mentoring on missing data; review of previous 
slides 

• Melissa Krone and Jesse Canchola: Contributions to early versions of this 
presentation in the early 2000s. 

40 

 



References 
• Allison, P. (2002). Missing Data. Thousand Oaks, CA, Sage Publications. 

• Buhi, E. R., et al. (2008). "Out of sight, not out of mind: Strategies for handling missing data." American Journal of Health Behavior, 32(1): 83-92. 

• Collins, L. M., et al. (2001). "A comparison of inclusive and restrictive strategies in modern missing data procedures." Psychological Methods, 6(4): 
330-351. 

• Cohen J. and Cohen P. (1983) Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences,  2nd ed. LEA, NJ 

• Davey, A. and Savla, J. (2010). Statistical Power Analysis with Missing Data: A Structural Equation Modeling Approach. New York: Routledge 
Academic.  

• Dong, Y. and Peng CY. (2013).Principled missing data methods for researchers. Methodology, 2: 222. Open Access: 
http://www.springerplus.com/content/2/1/222.  Accessed on November 26, 2013.  

• Enders, C.K. (2010). Applied Missing Data Analysis. New York, NY: Guilford.  

• Graham, J.W. (2012). Missing Data: Analysis and Design. New York: Springer.  

• Graham, J. W. (2009). "Missing Data Analysis: Making It Work in the Real World." Annual Review of Psychology, 60: 549-576. 

• Graham, J. W., et al. (1996). "Maximizing the usefulness of data obtained with planned missing value patterns: An application of maximum 
likelihood procedures." Multivariate Behavioral Research, 31(2): 197-218. 

• Ibrahim, J. G., et al. (2005). "Missing Data Methods for Generalized Linear Models: A Review." Journal of the American Statistical Association, 
100(469): 332-346. 

• Jones, M. P. (1996). "Indicator and stratification methods for missing explanatory variables in multiple linear regression." Journal of the American 
Statistical Association, 91: 222-230. 

• Leon, A. C., et al. (2007). "Bias reduction with an adjustment for participants' intent to dropout of a randomized controlled clinical trial." Clin Trials, 
4(5): 540-547. 

• Little, R. J. A. and D. B. Rubin (2002). Statistical Analysis with Missing Data. New York, John Wiley and Sons. 

• Muthén, B., et al. (1987). "On structural equation modeling with data that are not missing completely at random." Psychometrika, 52(3): 431-462. 

• Roth, P. L. (1994). "Missing data: A conceptual review for applied psychologists." Personnel Psychology, 47(3): 537-560. 

• Rubin, D. B. (1976). "Inference and missing data (with discussion)." Biometrika, 63: 581-592. 

• Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. New York, John Wiley and Sons. 

• Schafer, J. L. and J. W. Graham (2002). "Missing data: Our view of the state of the art." Psychological Methods, 7(2): 147-177. 

• Yuan, K.-H. and P. M. Bentler (2000). Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. 
Sociological Methodology 2000. M. E. Sobel. Washington, DC, American Sociological Association: 165-200. 

 

 

 

41 

 

http://www.springerplus.com/content/2/1/222. Accessed on November 26


Example 3: ML Logistic Regression with Bar Data 
• Revisiting the tobacco and bars data set, what if we wanted to know 

what the associations of the previously studied explanatory variables 
with daily smoking (yes/no) are? (variable: smkdaily) 

• Ordinarily one would fit a logistic regression model using the Stata  
-logistic- command, but that is not possible in this example because 
the listwise deletion intersection of explanatory variables yields zero 
observations.  

• Instead, we can use maximum likelihood estimation in Mplus to fit 
the model.  

• We’ll use the user-written Stata command file -runmplus-* to pass 
the data from Stata to Mplus and display the Mplus results within 
Stata.  
– runmplus is written by Richard Jones and may be obtained from: 

https://sites.google.com/site/lvmworkshop/home/runmplus-stuff.  
– This site also features various utilities that work with Mplus and -runmplus-, including a 

handy Stata ado program, lli.ado, for comparing nested models using the robust 
likelihood ratio test.  

 

* We appreciate Dr. Adam Carle recommending -runmplus- to us.  
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Example 3: Results and Summary 

• Results 
– There is an overall effect for race (Wald chi-square = 13.06, p = .011) 

• Latinos have a lower odds of smoking relative to Whites (OR = .70; p = .003) 
• Other race ethnic group members also have a lower odds of smoking relative to 

Whites (OR = .57; p = .024)  
– There is an overall effect for sexual orientation (Wald chi-square (3) = 16.24, p = .001) 

• Bisexuals have a higher odds of smoking relative to heterosexuals (OR = 3.41; p = 
.006) 

– Self-identified smokers have higher odds of daily smoking relative to self-identified non-
smokers (OR = 21.69; p < .001).  

– For every one-unit increase in tobacco exposure through one’s social network, the odds 
of reporting daily smoking increase by 19% (OR = 1.21; p < .001).  

– Extraversion is positively associated with being a daily smoker (OR = 1.16; p = .040).  

• Features of the Analysis 
– Maximum likelihood handling of missing data with a binary outcome. 
– Robust standard errors address clustering of participants within bars. 
– Auxiliary variable contributes information through explaining the 

outcome and by being correlated with other explanatory variables.  
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Example 4: Cox Regression via ML 
• Cohort study conducted by Dr. Elvin Geng featuring N = 33,947 research 

participants with HIV from Kenya, Tanzania, and Uganda.  
• Outcome: Time to death. Implies Cox proportional hazards model. 
•  1,082 cases excluded due to having zero observation time. 
• Predictors (listwise n = 26,883; 82% of the sample of 32,865)  

– Country: (1 = Kenya; 2 = Tanzania; 3 = Uganda). n = 32,865 
– Sex (0 = female; 1 = male). n = 32,865 
– Age at study entry. n = 32,463 (402 missing) 
– Already in care (0 = no; 1 = yes). n = 32,865 
– Pre-therapy CD4 T-cell count  modeled by three restricted cubic spline variables. n = 

29,347 (3,518 missing) 
– Tuberculosis infection at study start  (0 = no; 1 = yes). n = 30,292 (2,573 missing) 

• Case weight included to improve estimates based on random sampling and 
subsequent re-contacting of participants who were originally lost to follow-
up.  

• Clustering present due to participants being nested within clinics.  
• Use Mplus (via -runmplus- in Stata) to perform the Cox regression analysis 

using direct ML.  
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Example 4: Cox ML Regression Results 
• Results 

– Listwise:  
• There is more than a two-fold hazard of death being in country 2 (Tanzania) versus the 

reference country (Kenya; HR = 2.40; p < .001).  
• There is a lower hazard of death being in country 3 (Uganda) versus the reference 

country (Kenya; HR = 0.62; p < .001).  
• Males have a higher hazard of death relative to females (HR = 1.43, p = .009).  
• The hazard of death increases 16.5% for every 10 year increase in age (HR = 1.165, p 

<.001 ).  
• The linear component of CD4 is negatively associated with hazard of death (HR = .880, p 

< .001 ), though the cubic terms are also significant, so the association is likely non-linear.  
• Being in care is strongly negatively associated with the hazard of death (HR = 0.38, p < 

.001).  
• Having TB means a higher hazard of death (HR = 1.31, p = .001).  

– ML: Similar to listwise, although country 3 (Uganda) relative to country 1 
(Kenya) is no longer significant (HR = .84; p = .566).  

• Features of the analysis 
– Continuous failure time outcome variable 
– Missing values on predictors handled seamlessly by direct ML estimation under the MAR 

assumption, avoiding the complexities inherent in imputing survival data via multiple 
imputation 

– Clustering due to clinic handled through robust standard errors 
– Case weights incorporated into the analysis  
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Appendix (1) 
 

Missing at Random (MAR) 

• Denote Ycomplete as the complete data. Partition 
Ycomplete as:  

 Ycomplete = (Yobserved, Ymissing) 

• Define R as an indicator of (non)missingness for variable Y. 
R = 1 if Y is observed; R = 0 if Y is missing.  

• MAR holds when the distribution of missingness does not 
depend on the values of Y that would have been observed 
had Y not been missing: 

 P(R|Ycomplete) = P(R|Yobserved) 
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Appendix (2) 
 

Missing Completely at Random (MCAR) 

• Put another way, MAR allows the probabilities of 
missingness to depend on observed data, but not on 
missing data.  

• MAR is a much less restrictive assumption than MCAR.  

• MCAR is a special case of MAR where the distribution of 
missing data does not depend on Yobserved, also: 

 P(R|Ycomplete) = P(R)  

• If incomplete data are MCAR, the cases with complete data 
are then a random subset of the original sample.  
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Appendix (3) 
 

Not Missing at Random (NMAR) 
• The probability that Y is missing is a function of Y itself.  
• Missing data mechanism must be modeled to obtain 

good parameter estimates. Examples: 
– Heckman’s selection model 
– Pattern mixture models 
– Weighted multiple imputation 

• Disadvantages of NMAR modeling: Requires high level 
of knowledge about missingness mechanism; results 
are often sensitive to the choice of NMAR model 
selected (Allison, 2002) 
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Appendix (4)  
 

Ignorability 
• Ignorable data missingness - occurs when data are incomplete 

due to MCAR or MAR processes (Allison, 2002)  

• If incomplete data arise from an MCAR or MAR data 
missingness mechanism, there is no need for the analyst to 
explicitly model the missing data mechanism (in the likelihood 
function), as long as the analyst uses methods (and software 
that implemens those methods) that take the missingness 
mechanism into account  

• Even if data missingness is not fully MAR, methods that 
assume MAR usually (though not always) offer lower expected 
parameter estimate bias than methods that assume MCAR 
(Muthén, Kaplan, & Hollis, Psychometrika, 1987). 
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Appendix (5)  
 

A Few Words About X-side and Y-side Missingness 
• Some software programs implicitly incorporate ML handling of an outcome 

variable Y under the MAR assumption. These are typically mixed models 
routines that can be employed to analyze longitudinal data with missing 
outcomes 

– PROCs MIXED, GLIMMIX (ML and REML), and NLMIXED in SAS 

– MIXED in SPSS 

– Stata -xt- commands which use ML estimation (there are many) and user-written ML-
based analysis commands (e.g., -gllamm-) 

• However, these commands will drop the observation row when one or more X 
values in that row are missing.  

• These commands are very useful for analyzing longitudinal data with no 
missing covariates (e.g., complete baseline covariate data).  

• They cannot conveniently be used to handle cross-sectional missing data or 
longitudinal data with missing covariates.  
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