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Missing Data Overview

 Missing data are ubiquitous in applied quantitative
studies

— Don’t know/don’t remember/refused responses on
cross-sectional surveys and self-administered paper
surveys

— Skip patterns

— Interviewer error/A-CASI| programming errors or
omissions.

— Longitudinal loss to follow-up




Preventing Missing Data

 Prevention is the best first step
— A-CASI, CAPI, etc.

— Rigorous retention protocols for participant
tracking, etc.

— Diane Binson’s, Bill Woods’, and Lance Pollack’s
work with flexible interviewing methods.
— Choi study QDS example

e Asking longitudinal study participants if they
anticipate barriers to returning for follow-up

visits, then problem solving those issues. See:
Leon, Demirtas, Hedeker, 2007, Clinical Trials




Missing Data Mechanisms

 What mechanisms lead to missing data?

 Rubin’s taxonomy of missing data mechanisms
— Rubin (1976), Biometrika
— MCAR: Missing Completely at Random
— MAR: Missing at Random
— NMAR: Not Missing at Random
e Also known as MNAR (Missing Not at Random)

— Good articles that spell this out:
e Schafer & Graham, 2002, Psychological Methods
e Graham, 2009, Annual Review of Psychology




Missing at Random (MAR)

e Define R as an indicator of (non)missingness for
variable Y. R=1if Yis observed; R =0 if Y is missing.

e Denote Ycomplete as the complete data. Partition
Ycomplete as
— Ycomplete = (Yobserved, Ymissing)

e MAR occurs when the distribution of missingness
does not depend on the values of Y that would have

been observed had Y not been missing:
— P(R|Ycomplete) = P(R|Yobserved)




Missing Completely at Random
(MCAR)

Put another way, MAR allows the probabilities of
missingness to depend on observed data, but not on
missing data.

MAR is a much less restrictive assumption than MCAR.

MCAR is a special case of MAR where the distribution of
missing data does not depend on Yobserved, also:

— P(R|Ycomplete) = P(R)

If incomplete data are MCAR, the cases with complete
data are then a random subset of the original sample.




Not Missing at Random (NMAR)

e The probability that Y is missing is a function of Y
itself.

 Missing data mechanism must be modeled to
obtain good parameter estimates. Examples:
— Heckman’s selection model
— Pattern mixture models

 Disadvantages of NMAR modeling: Requires high
level of knowledge about missingness
mechanism; results are often sensitive to the
choice of NMAR model selected.




Missing Data Mechanisms: Example 1

 Measuring systolic blood pressure (SBP) in January and February
(Schafer and Graham, 2002, Psychological Methods, 7(2), 147-
177)

— MCAR: Data missing in February at random, unrelated to SBP level
in January or February or any other variable in the study - missing
cases are a random subset of the original sample’s cases.

— MAR: Data missing in February because the January measurement
did not exceed 140 - cases are randomly missing data within the
two groups: SBP > 140 and SBP <= 140.

— NMAR: Data missing in February because the February SBP
measurement did not exceed 140. (SBP taken, but not recorded if
it is <= 140.) Cases’ data are not missing at random.




Missing Data Mechanisms: Example 2

e Measuring Body Mass Index (BMI) of ambulance drivers in a
longitudinal context (Heitjan, 1997, AJPH, 87(4), 548-550).

— MCAR: Data missing at follow-up because participants were out on call
at time of scheduled measurement, i.e., reason for data missingness is
unrelated to BMI or other measured variables - missing cases are a
random subset of the population of all cases.

— MAR: Data missing at follow-up because of high BMI and
embarrassment at initial visit, regardless of whether participant gained
or lost weight since baseline, i.e., reason for data missingness in follow-
up BMl is related to baseline BMI, a measured variable in the study.

— NMAR: Data missing at follow-up because of weight gain since last visit
(assuming weight gain is unrelated to other measured variables in the
study, i.e., baseline BMI not available for some reason).




MCAR, MAR, NMAR Revisited

 From Schafer & Graham, 2002, p. 151: Another way
to think about MAR, MCAR, and NMAR: If you have
observed data X and incomplete data Y, and
assuming independence of observations:

— MCAR indicates that the probability of Y being missing
for a participant does not depend her values on X or Y.

— MAR indicates that the probability of Y being missing
for the participant may depend on her X values but
not her Y values.

— NMAR indicates that the probability of Y being missing
depends on the participant’s actual Y values.




Occurrence of Missingness Types

e MCAR: Missing Completely at Random
— A very stringent assumption unlikely to be met in practice
— Example: computer failure loses some cases’ data but not others

e MAR: Missing at Random

— Much more likely to be met in practice, especially in social and
behavioral research where variables tend to be correlated with
each other and with missingness (Schafer & Graham, 2002,
Psychological Methods)

* NMAR: Not Missing at Random

— Unknown. MCAR vs. MAR can be formally tested via statistical
tests, but MAR vs. NMAR cannot be tested.

— Inclusion of measures during the study design phase that are likely
to be correlated with subsequent data missingness can help to
minimize NMAR missingness.

— Some NMAR missingness may be inevitable, however.




lgnorability

lgnorable data missingness - occurs when data are incomplete
due to MCAR or MAR process

If incomplete data arise from an MCAR or MAR data
missingness mechanism, there is no need for the analyst to
explicitly model the missing data mechanism (in the likelihood
function), as long as the analyst uses software programs that
take the missingness mechanism into account internally
(several of these will be mentioned later)

Even if data missingness is not fully MAR, methods that
assume MAR usually (though not always) offer lower expected
parameter estimate bias than methods that assume MCAR
(Muthén, Kaplan, & Hollis, Psychometrika, 1987).




Ad-hoc Approaches to
Handling Missing Data

Listwise deletion (a.k.a. complete-case analysis)

e Standard statistical programs typically delete the whole case from
an analysis if one or more variables’ values are missing and use
only complete cases in analyses (listwise deletion)

Pairwise deletion (a.k.a. available-case analysis)
Dummy variable adjustment (Cohen & Cohen)

Single imputation replacement with variable or
participant means

Regression
Hot deck




Listwise Deletion of Missing Data

Consequences of listwise deletion of missing data:

e |If missing data are due to MCAR:

— Parameter estimates are unbiased, but standard errors are enlarged and
power for hypothesis testing is reduced

e |f missing data are due to MAR:

— Parameter estimates may be biased, standard errors enlarged, and
power for hypothesis testing reduced

e |f missing data are due to NMAR:

— Parameter estimates may be biased, standard errors enlarged, and
power for hypothesis testing reduced

— Robust to NMAR for predictor variables (all regression models) and
robust to predictor variables OR outcome variable in logistic models
(slopes only)




Pairwise Deletion of Missing Data

e Use pairs of available cases for computation of any
sample moment.

— For computation of means and variances, use all
available data for each variable

— For computation of covariances, use all available data
on pairs of variables.

 Can lead to non-positive definite variance-
covariance matrices because it uses different pairs
of cases for each entry.

e Can lead to biased standard errors under MAR.




Dummy Variable Adjustment

Advocated by Cohen & Cohen (1985). Steps:

1. When X has missing values, create a dummy
variable D to indicate complete case versus
case with missing data.

2. When Xis missing, fill in a constant ¢

3. Regress Y on X and D (and other non-missing
predictors).

 Produces biased coefficient estimates (see
Jones’ 1996 JASA article)




Single Imputation Methods

Mean substitution - by variable or by observation

Regression imputation (i.e., replacement with conditional means)
Hot deck: Pick “donor” cases within homogeneous strata of observed
data to provide data for cases with unobserved values.

These ad hoc approaches lead to biased parameter
estimates (e.g., means, regression coefficients); variance
and standard error estimates that are biased downwards.

— One exception: Rubin (1987) provides a hot-deck based method
of multiple imputation that may return unbiased parameter
estimates under MAR.

Otherwise, these methods are not recommended.




Summary: Ad hoc Methods (1)

— Ad hoc methods such as listwise deletion, pairwise
deletion, or substitution of the variable’s mean value
usually assume MCAR and are not recommended. See
Paul Allison’s 2002 Sage publication for a readable
treatment of the reasons why these methods don’t
usually work well.

— Listwise deletion may yield unbiased results in some
circumstances, however:

—Regression models where the probability of missing
data on the independent variables does not depend
on the value of the dependent variable (Allison, 2002,

pp. 6-7).




Summary: Ad hoc Methods (2)

— Regression models where the probability of missingness on Y depends
on X values (covariate-dependent missingness. See: Little, 1995, JASA).
In general, when there are missing data, estimates of sample
statistics such as means are more biased than are regression
parameter estimates (Little & Rubin, 2002: Statistical Analysis
with Missing Data, Wiley, 2002).
Remember, though, that efficiency in the regression analysis
context is reduced due to missing data. You can lose a lot of
statistical power, especially if there are many cases and missing
data patterns, and the number of complete cases is a small
fraction of the original number of cases.




Summary: Ad hoc Methods (3)

— NMAR missingness can only be addressed through
explicitly assuming a specific missingness
mechanism, which can lead to suboptimal results if
an incorrect missingness mechanism is specified
(Allison, 2002).

— There is even some evidence that methods that
assume MAR missingness may outperform other
approaches for NMAR situations (Muthén, Kaplan, &
Hollis, 1987, Psychometrika).

e This suggests that it can be beneficial to use methods that

assume MAR rather than MCAR missingness and there is
likely little downside in doing so.




Methods for MAR Missingness

Ibrahim (Asa, 2005) reviewed four general approaches for
handling MAR missingness and found all to perform about
equally well:

— Inverse censoring weights

— Fully Bayesian analysis

— Multiple imputation (Ml)

— Full-information maximum likelihood estimation (FIML)

A full treatment of each technique is beyond the scope of
today’s presentation. We will concentrate on how to
employ Stata to address missingness using full-information
maximum likelihood (FIML) and, in Part 2, multiple
imputation (M) under the MAR assumption.




Maximum Likelihood (1)

When there are no missing data:

e Uses the likelihood function to express the probability of the
observed data, given the parameters, as a function of the
unknown parameter values.

e Example: L(8) = H in:1 p(X,, VY, ‘9) where p(x,y|0) is
the (joint) probability of observing (x,y) given a parameter 6,
for a sample of n independent observations. The likelihood
function is the product of the separate contributions to the
likelihood from each observation.

e MLEs are the values of the parameters which maximize the
probability of the observed data (the likelihood).




Maximum Likelihood (2)

Under ordinary conditions, ML estimates are:

— consistent (approximately unbiased in large samples)

— asymptotically efficient (have the smallest possible variance)

— asymptotically normal (one can use normal theory to
construct confidence intervals and p-values).

The ML approach can be easily extended to MAR
situations: L(0) =] [, p(x.y; IO ], 9(y;16)

j=m+1

The contribution to the likelihood from an observation
with X missing is the marginal: g(y;|0) = Z,p(x,y;|0)

This likelihood may be maximized like any other
likelihood function. Often labeled FIML or direct ML.




X-side and Y-side Missingness

Some software programs implicitly incorporate FIML
handling of an outcome variable Y. These are typically
mixed models routines that can be employed to analyze
longitudinal data with missing outcomes

— PROCs MIXED, GLIMMIX (ML and REML), and NLMIXED in SAS
— MIXED in SPSS

— Stata -xt- commands (there are many) and -gllamm-

However, these commands will drop the whole observation
when one or more X values are missing.

They cannot conveniently be used to handle cross-sectional
missing data.




FIML via SEM Programs (1)

Some of the most important developments in handling non-
normal and incomplete data arose in the latent variable
(structural equation modeling) field in the 1990s.

For many years, the AMOS SEM program has had a user-friendly
implementation of FIML suitable for use with cross-sectional
and longitudinal X-side and Y-side missing data.

In the late 1990s, Bengt and Linda Muthén developed Mplus, a
general latent variable modeling program that included FIML
missing data handling and featured, among other things, the
ability to handle categorical and event history/survival outcome
variables and hierarchically clustered (multilevel) data
structures, with and without complete data.




FIML Programs — Partial List (1)

AMOS - Analysis of Moment Structures

Commercial program licensed as part of SPSS (CAPS has a 10-user
license for this product)

Fits a wide variety of univariate and multivariate linear regression,
ANOVA, ANCOVA, and structural equation (SEM) models

Fits ordered categorical and censored data models using Bayesian
estimation

http://www.spss.com

No capabilities at present for analyzing multilevel data

Mx - Freeware fits a wide variety of SEMs

http://views.vcu.edu/mx

LISREL — LInear Structural RELations

Commercial program: http://www.ssicentral.com
Features capabilities for analyzing multilevel data




FIML Programs — Partial List (2)

ben Loglinear & Event history analysis w/ Missing data

— Freeware DOS program downloadable from the Internet
(Jeroen Vermunt)

http://www.uvt.nl/faculteiten/fsw/organisatie/departementen/mto/software2.html

— Fits log-linear, logit, latent class, and event history models
with categorical predictors.

Mplus — Fits a wide variety of models, including
multilevel regressions and SEMs
— http://www.statmodel.com

SAS PROC CALIS and Stata -sem- routines now enable
multiple linear regression, path analysis and SEM with
missing data handling via FIML for models with
continuous, normal mediators and outcomes.




FIML in Stata’s -sem- command: Robust SE

e Stata’s -sem- command has the -robust- option to generate
robust “sandwich” standard errors

e Stata’s -sem- command also has the -cluster- option to
generate robust “sandwich” standard errors for multilevel
data (one level of clustering)

— Resulting robust standard errors technically assume incomplete
data arise from a mechanism in between MAR and MCAR (see
http://www.statmodel.com/discussion/messages/22/1047.html
for details) and may perform well in small to moderately-sized
samples with non-normality and missing data (Yuan & Bentler,
2000, Sociological Methodology, 30(1), 165-200). Initial
simulation studies show low SE bias for this estimator with MAR
data. (See
http://www.statmodel.com/download/webnotes/mc2.pdf ). If
you are concerned about MAR vs. MCAR, the bootstrap is
another option.




Maximum Likelihood Example (1)

2 x 2 Table with missing data

Vote (Y=V)
Sex (X=S) Yes No . Y N
Male 28 45 10 (73) Py Py
Female 22 52 15  (74) Py Py
Total 50 97 25 (147) 1

Likelihood function: L(p,1, P12 Po1s Pyy) = (P11)%8(P15)*
(P21)%2 (P22)°2 (P11+P 1) (P41 +P50)




Maximum Likelihood Example (2)

2 x 2 Table with missing data

28 73 +10
_ — 0.1851
Pu= (=) 7 )
D = (2 2410y _ g 2075
7374 172
p21—(22)(74+15)—01538
172
pzz—(52)(74+15)—03636

172




Maximum Likelihood Example (3)

Using bev for 2 x 2 Table

Input (partial)

* R = response (NM) indicator
*S = sex; V = vote;

man 2 * 2 manifest variables
res 1 *1 response indicator
dim 222 * with two levels
labRSV *andlabel R
sub SV S * defines these two subgroups
mod SV * model for complete
dat [28 45 22 52 * subgroup SV
10 15] * subgroup S

Output (partial)
*¥** (CONDITIONAL) PROBABILITIES ***

*P(SV) * complete data only

11 0.1851(0.0311) 0.1905 (0.0324)
12 0.2975(0.0361) 0.3061 (0.0380)
21 0.1538(0.0297) 0.1497 (0.0294)
22 0.3636(0.0384) 0.3537 (0.0394)

* P(R) *
1 0.8547
2 0.1453

(%)
[\




Example 1: FIML Linear Regression

The AIDS Foundation of Chicago administered a questionnaire
to 570 HIV-positive men. Variables available for analysis include:

Gay harassment scale score (the outcome; n = 551)
Race (White, Black, Hispanic, Other; n = 569)

Sexual Orientation (Gay, Straight, Bi, Other; n = 548)
Age in years (n = 570)

Visited doctor in last six months? (yes; no; n = 450)
Months living with HIV (n = 559)

HIV stigma scale score (n = 552)

Internalized heterosexism scale score (n = 481)

Disclosure items: 5-point Likert (none, a few, half, most, all)
— Close friends know HIV status (dss1; n = 557)
— Family members know HIV status (dss2; n = 552)

HIV treatment beliefs scale (BMQ concerns; n = 556)
Social support scale (n = 562)




Example 1: Analysis Approach

Research question: What are the associations of age, doctor
visit, race, and sexual orientation with experiences of gay
harassment?

If there were no missing data, how would we proceed?

— We have a continuous outcome, gay harassment for all analyses
considered here.

— Continuous explanatory variable (age): Pearson or Spearman correlation

— Binary explanatory variable (doctor visit): t-test or analogous two-group
non-parametric test

— Multi-category explanatory variable (race, sexual orientation): OLS
regression; ANOVA

— Multivariable analyses involving all of these plus other control variables:
OLS regression/general linear modeling (GLM) framework

FIML analyses: Because the FIML approach is model-
based, uses all information in the likelihood, and is
based on first- and second-order moments (i.e, means,
variances, and covariances), the analyses are cast in the
covariance matrix and multiple regression framework.




Example 1: Linear Regression

Step 1: Describe the data, including amounts and patterns of
missing data

Step 2: Perform a few bivariable linear regression analyses
using the default listwise deletion approach in Stata’s -
regress- command to illustrate the approach

Step 3: Perform multivariable linear regression analyses using
the defatét listwise deletion approach in Stata’s -regress-
comman

Step 4: Perform multivariable linear regression analyses using
the default listwise deletion approach in Stata’s -sem- ,
command (this is to show how to fit a regression model using
-sem- and to demonstrate that the results will be highly
similar to what was obtained in Step 3 using -regress-)

Step 5: Reprise the analysis from Step 4 using FIML via -sem-

Stﬂo 6 (optional): Demonstrate how to perform bivariable

Fl L_anal\{)ses via -sem- (oddly, this is a bit more tricky than
multivariable analyses)

— In a real application, you would most likely generate a FIML-based

covariance/correlation matrix for bivariate analyses and then
perform multivariable regressions for multivariable analyses




Example 1: Linear Regression Results (1)

e Bivariable results (listwise deletion):
— Age (n =551): Negatively associated with harassment.

— Six-month doctor visit (n = 435): Not associated with gay
harassment.

— Race (n = 550): Overall difference in means with Blacks
and Hispanics reporting less gay harassment than Whites

— Sexual orientation (n = 540): Overall difference in means
with straight-identified persons reporting less gay-
harassment than gay-identified individuals.




Example 1: Linear Regression Results (2)

e Bivariable results (FIML using -sem-; n = 570):
— Age: Negatively associated with harassment.

— Six-month doctor visit: Not associated with gay
harassment.

— Race: Black race negatively associated with gay
harassment.

— Sexual orientation: Straight sexual orientation
negatively associated with gay harassment.




Example 1: Linear Regression Results (3)

e Multivariable results (listwise deletion; n = 340):
— Age: Negatively associated with harassment.

— Six-month doctor visit: Not associated with gay
harassment.

— Race: No overall mean difference; Blacks still report less
gay harassment, but Hispanic comparison with Whites is
now non-significant.

— Sexual orientation: No overall mean difference between
groups and no paired differences are significant.




Example 1: Linear Regression Results (4)

 Multivariable results (FIML using -sem-; n = 570):
— Age: Negatively associated with harassment.

— Six-month doctor visit: Not associated with gay
harassment.

— Race: Marginally-significant overall difference in means
with Blacks and Hispanics reporting less gay harassment
than Whites.

— Sexual orientation: Overall difference in means with
straight-identified person reporting less gay-harassment
than gay-identified individuals.




Maximum Likelihood Summary (1)

 FIML advantages:

—Provides a single, deterministic set of
results appropriate under the MAR
assumption with a single reportable N.

—Well-accepted method for handling
missing values (e.g., in grant proposals
and manuscripts); simple to describe

—Generally fast and convenient




Maximum Likelihood Summary (2)

 FIML disadvantages:

— Only available for some models via standard software (would
need to program other models), though the number of models
and programs supporting those models continues to grow

— Because FIML uses full information and estimates means,
variances, and covariances for all variables simultaneously, more
care must be taken to ensure convergence, especially when there
are large numbers of variables and relatively few numbers of
cases.

— Parametric: may not be robust to violations of distributional
assumptions (e.g., multivariate normality)

e However, robust standard errors seem to work pretty well for
inferential purposes (the bootstrap is an alternative).




Part 1 Conclusions

Planning ahead can minimize cross-sectional non-response
and longitudinal loss to follow-up.

Use of ad hoc methods, while convenient, assume incomplete
data arise from an MCAR mechanism (a fairly strict
assumption) and can lead to biased results.

Maximum likelihood methods such as FIML assume MAR (a
less stringent assumption) and are readily available for some
models/analysis scenarios.

FIML/direct ML are most convenient for models that are
supported by software and when parametric assumptions are
met or not too badly violated.

For scenarios not supported by FIML software programs,
consider multiple imputation, which we will discuss in Part 2.




