The Johnson-Neyman

Ann Lazar
ann.lazar@ucsf.edu

Department of Preventive and Restorative Dental Sciences
Department of Epidemiology and Biostatistics
University of California, San Francisco

February 21, 2014
Motivation

Rheumatoid Arthritis – case-control
High School and Beyond - survey
CAN DO FV – Phase 3 RCT

The Johnson-Neyman (J-N)
Examples
Final Comment
Motivation: RA Case-Control Example

- Autoantibodies are present years prior to the onset of symptoms of rheumatoid arthritis (RA) and may be highly predictive of the development of RA

- Interest in determining *when* the autoantibodies are elevated prior to diagnosis of RA
Motivation: RA Case-Control Example

- Autoantibodies are present years prior to the onset of symptoms of rheumatoid arthritis (RA) and may be highly predictive of the development of RA

- Interest in determining *when* the autoantibodies are elevated prior to diagnosis of RA
RA Case Control Study

• SERA study
 • retrospective case-control study of RA subjects 13.67 years (4994 days) prior to diagnosis

• Study Sample
 • 166 subjects
 • 83 controls and 83 cases
 • 486 measurements
 • 1 to 4 measurements per subject

RA Case Control Study

Population Average Curves with Standard Error Lines (Broken)

![Graph showing population average curves with standard error lines.](image_url)

- **Cases Population Average Curve**
- **Controls Population Average Curve**

Log 10 Rheumatoid Factor (IU/mL) vs Time (years)
RA Case Control Example

Figure 1: Population Average Curves and an Individual RA Curve with Corresponding Standard Error Lines (Broken)
High School and Beyond Survey

- Study the relationship between mathematics achievement score (MA) and socioeconomic status score (SES) between sectors: Catholic (n=70) and public (n= 90) high schools
 - SES = a composite score of parental income, education, occupation and achievement
 - A subset of the data from the High School and Beyond Survey (HSBS) of 7,185 students nested within 160 high schools, which averaged 45 students per school
 - This study can address important questions:
 - 1) What range of SES does the mathematics achievement scores statistically differ between private and public high schools
 - 2) Which school sector does better, Catholic or Public High Schools?
High School and Beyond Survey

![Graph showing the difference in math achievement vs. relative student SES.](image)
High School and Beyond Survey

![Graph showing odds ratio against relative student SES](image)
We are interested in detecting and exploring patterns of heterogeneity of treatment effect (e.g., odds ratio).

- Identify *people* who respond differently to treatment.
- Identify *who* may benefit the most (or the least) from a treatment so treatment can be *tailored* to the individual.

We proceed by studying

- Differences *(heterogeneity)* between groups for varying values of a baseline covariate based on a model.
CAN DO Fluoride Varnish (FV)

- **Variables**
 - Primary Outcome (Dichotomous): Any Caries Incidence
 - Treatment: FV + parental counseling vs. counseling alone
 - Baseline Covariate (Continuous): Salivary Mutans Streptococci (MS) (CFU/ml))

- **Study Sample**
 - 249 caries-free children with baseline MS
 - 0 FV: n=89; 1F/Yr : n=78 ; 2FV/Yr : n=82

- **Goal**
 - At what values of MS does FV treatment result in statistically different (heterogeneity) caries incidence?
 - Who benefits (most) from treatment?
CAN DO Fluoride Varnish (FV)

Logistic Regression Model of Caries Incidence v. No Caries Incidence with Associated Standard Error Lines

- No FV: Log Odds = -1.15 + 0.52*MS
- FV: Log Odds = -1.93 + 0.33*MS

Lazar AA, PhD
Johnson-Neyman (J-N) Approach
Aim: What range of the independent variable is the difference in the outcome variable statistically significant among groups (“Significance Region”)?

Johnson-Neyman (J-N) (1936) in ANCOVA when the regression lines are not parallel
- Solves the problem of identifying regions of significance or “Significance Region”

Tests whether the difference in means for a particular value of the covariate between two groups is statistically significance
- comparing computed F statistics to the critical value of Fisher’s F distribution
- Assumes normality and homogeneity of variance
Figure 1: Population Average Curves with Corresponding Standard Error Lines (Broken Lines)
Huiitema (1980) “explicit solution”, a simple formula that involves solving a quadratic equation, available for comparing several groups but only when the number of covariates is one.

For two or more covariates, the explicit solution is thought to be intractable.

Hunka and Leighton (1997) developed a solution for any number of possible covariates by casting the equation within a general linear model framework. But this approach cannot be solved directly, symbolic processing capabilities of computational software (e.g., Mathematica_
Improvements to J-N Approach – Hunka and Leighton (1997) 3 variables of interest

“Two Paraboloids”
Miyazaki and Maier (M-M) (2005)
- developed a procedure for determining the significance regions for correlated Gaussian distributed data involves fitting hierarchical linear mixed models (HLM)
- solved for significance region using the symbolic processing capabilities (e.g., Mathematica)

Above solutions are available for comparing groups
Significance regions (solutions) for both correlated Gaussian and non-Gaussian distributed data suitable for generalized linear (mixed) models (GL(M)M), which includes HLMs. The proposed solution can:

- Compare subjects and groups
- Adjust for covariates
- Account for Multiple Testing
- Makes use of one software package to implement the model and solution, as follows...
The conditional mean of Y depends on the fixed (β) and random effects (u) via the linear predictor $\eta = X\beta + Zu$, where

$g\{E(Y|u)\} = \eta = X\beta + Zu$

$H_0: \theta = 0$ can be tested with a t- or F-statistic.

Let $\hat{\theta} = \tilde{C}\hat{L}C'$ and \hat{L} is the empirical covariance matrix of $\hat{\beta} - \beta$ and $\hat{\theta} - \theta$; s=the rank of C, the contrast matrix.

$t(\hat{\theta}) = \frac{\hat{\theta}}{\sqrt{\hat{V}_{\hat{\theta}}}}$ and $F(\hat{\theta}) = \left[\hat{\theta}' \left(\hat{V}_{\hat{\theta}} \right)^{-1} \hat{\theta} \right]_{sx1}^1$
Let h identify subsets of linear function of $\begin{pmatrix} \beta \\ u \end{pmatrix}$

- H_0: $h\theta = 0$ rejected ($h\theta \neq 0$)
 $$t(h\hat{\theta}) > \sqrt{sF_{1-\alpha,s,v}}$$

- Or we can use our explicit solution to identify the significance region
 $$h_x[\theta\theta' - sF_{1-\alpha,s,v}V_\theta]h_x > 0$$

- SAS macro available to determine the significance regions
Suppose θ_C represent the difference in intercepts; θ_A denote the difference in slopes, then $\theta = \begin{pmatrix} \theta_C \\ \theta_A \end{pmatrix}$

Let $V_{\theta(C)}$, $V_{\theta(A)}$, and $Cov_{\theta(A)\theta(C)}$ be the empirical prediction error variance (V) and covariance (Cov) of θ_C and θ_A

\[
(1 \ X) \begin{pmatrix} \theta_C^2 & \theta_C \theta_A \\ \theta_A \theta_C & \theta_A^2 \end{pmatrix} - sF_{1-\alpha,s,v} \begin{pmatrix} V_{\theta(C)} & Cov_{\theta(A)\theta(C)} \\ Cov_{\theta(C)\theta(A)} & V_{\theta(A)} \end{pmatrix} \begin{pmatrix} 1 \\ X \end{pmatrix} > 0
\]
Let $A = \theta_A^2 - sF_{1-\alpha,s,v}V_{\theta(A)}$, $B = 2(\theta_A \theta_C - sF_{1-\alpha,s,v}Cov_{\theta(A)\theta(C)})$, $C = \theta_C^2 - sF_{1-\alpha,s,v}V_{\theta(C)}$, and the discriminant, $D = B^2 - 4AC$

Let $X_1 = \left[\frac{-B - \sqrt{D}}{2A}\right]$ and $X_2 = \left[\frac{-B + \sqrt{D}}{2A}\right]$.

- **Case I** ($A > 0$ implies $D > 0$): $X < X_1$ or $X > X_2$
- **Case II** ($A < 0$ and $D > 0$): $X_2 < X < X_1$
- **Case III** ($D < 0$ and $A < 0$): no region

- A proof of these 3 cases has been derived
Examples-RA Case Control Study

Population Average Curves with Standard Error Lines (Broken)

- Log 10 Rheumatoid Factor (U/mL)
- Time (years)

Cases Population Average Curve
Controls Population Average Curve
Examples- RA Case Control Example

Figure 1: Population Average Curves and an Individual RA Curve with Corresponding Standard Error Lines (Broken)
Step 1: Determine $\Delta(x)$

- Compare the Cases and Controls Population Average Curves
 $$\Delta(x) = Y_1(x) - Y_2(x) = (a_1 + \beta_1 x) - (a_2 + \beta_2 x) = (a_1 - a_2) + x(\beta_1 - \beta_2)$$

- Compare a Case’s Curve to the Controls Population Average Curve
 $$\Delta(x) = Y_1(x) - Y_{11}(x) = (\alpha_2 + \beta_2 x) - (\alpha_1 + \beta_1 x + a_{11} + b_{11} x) = (\alpha_2 - \alpha_1 - a_{11}) + (\beta_2 - \beta_1 - b_{11}) x$$

- Compare a Case’s Curve to their Population Average Curve
 $$\Delta(x) = Y_1(x) - Y_{11}(x) = (\alpha_1 + \beta_1 x) - (\alpha_1 + \beta_1 x + a_{11} + b_{11} x) = -a_{11} - b_{11} x$$
Step 2: Re-write $\Delta(x)$

- From Step 1:
 \[
 \Delta(x) = Y_1(x) - Y_2(x) = (a_1 + \beta_1 x) - (a_2 + \beta_2 x) = (a_1 - a_2) + x(\beta_1 - \beta_2)
 \]

- Step 2: Re-Write
 \[
 \Delta(x) = (1 - x) \begin{pmatrix} a_1 - a_2 \\ \beta_1 - \beta_2 \end{pmatrix} = h_x \theta
 \]

Note that $\theta = \begin{pmatrix} \beta \\ u \end{pmatrix} = (c_1, c_2) \begin{pmatrix} \beta \\ u \end{pmatrix} = c_1 \beta + c_2 u = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ c_1 & 0 & -1 & 0 \\ c_2 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \beta_1 \\ \alpha_2 \\ \beta_2 \end{pmatrix}$ with $c_2 = 0$
Step 3: Determine the set of x’s for which the times response curves differ

- From Step 1: Determine $\Delta(x)$
 $\Delta(x) = Y_1(x) - Y_2(x) = (a_1 + \beta_1 x) - (a_2 + \beta_2 x) = (a_1 - a_2) + x(\beta_1 - \beta_2)$

- From Step 2: Re-Write $\Delta(x)$
 $h_x \hat{\theta} = \begin{pmatrix} 1 & x \end{pmatrix} \begin{pmatrix} a_1 - a_2 \cr \beta_1 - \beta_2 \end{pmatrix} = h_x \begin{pmatrix} 1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} \alpha_1 \\
\beta_1 \\
\alpha_2 \\
\beta_2 \end{pmatrix}$

- Step 3: Determine the set of x’s for which this inequality holds,
 $t^2(h_x \hat{\theta}) = \left[\frac{h_x \hat{\theta}}{\sqrt{h_x \hat{\theta} h_x}} \right]^2 > sF_{1-a,s,v}$
Steps

1. Step 1: Determine $\Delta(x)$
2. Step 2: Re-write $\Delta(x)$ in terms of the difference between the intercepts and the difference between the slopes in matrix notation
3. Step 3: Determine the set of x's for which the time response curve differ
4. Step 4: Re-write Step 3 in quadratic form such that

 $$h_x \left[\dot{\hat{\theta}} - sF_{1-\alpha,s,v} \hat{V}_\delta \right] h_x' > 0$$

 and determine A, B, C and D from the quadratic formula,

 $$AX^2 + BX + C > 0$$

5. Step 5: Determine the significance region
Population Average Curves with Standard Error Lines (Broken)

Log 10 Rheumatoid Factor (IU/mL) vs. Time (years)

-6.3 years to diagnosis (0 years)
P<0.01
F= 26.3 s=2 v=164

Joint Test Statistically Significant?

NO

Stop: Case III NO Significance Region

YES

Slopes Significant (Scheffé Criterion)?

YES

Case I (A>0) Significance Region

Time <-20.3 (years) or Time >-6.3 (years)
\[a=+0.00794 \quad b=+0.21072 \]
\[c=+1.0123 \quad d=+0.01220 \]

NO

Case II (A<0 and D>0) Significance Region

Scheffé Criterion: \(t=7.25 > 2.47 \)

From Joint Test: \(F_{0.95,2,164} = 3.05 \)

Scheffé Criterion: \(\sqrt{2(3.05)} = 2.47 \)
Controls Population Average Curves and an
Individual RA Curve with Corresponding Standard Error Lines (Broken Lines)

Cases Population Average Curves and an
Individual RA Curve with Corresponding Standard Error Lines (Broken Lines)

-8.3 years to 0 years (diagnosis)

-5.9 years to -2.5 years
High School and Beyond Survey

1) What range of SES does mathematics achievement scores statistically differ between private and public high schools?

2) Which school sector does better, Catholic or Public High Schools?
High School and Beyond Survey

What range of SES does the mathematics achievement scores statistically differ between the Catholic high school sector and a particular public high school (for example, school 1296)?

Does the Catholic high school sector have higher math scores than a particular public high school?
• Fit generalized linear mixed models (GLMM) of mathematics achievement score, \(y_{ij} \), for the ith student in the jth cluster (school)

\[
 y_{ij} = \beta_{0j} + \beta_{1j} (SES_{ij} - \overline{SES}_j) + e_{ij} \\
 \beta_{0j} = \gamma_{00} + \gamma_{01} \overline{SES}_j + \gamma_{02} \text{sector}_j + u_{0j} \\
 \beta_{1j} = \gamma_{10} + \gamma_{11} \overline{SES}_j + \gamma_{12} \text{sector}_j + u_{1j}
\]

• \(\overline{SES}_j \) denotes the school-averaged student SES
• sector equals 1 for Catholic (C) schools or 0 for public (P) schools
• \(e_{ij} \) represents the unobservable random vector of normally distributed errors
• \(e_{ij} \) were assumed uncorrelated with the multivariate normally distributed random effects, \(u_{ij} \), of the school mean, \((u_{0j}) \), and SES-achievement slope \((u_{1j}) \).
\[EC(Y_{ij}) - EP(Y_{ij}) = \gamma_{02} + \gamma_{12}(SES_{ij} - \overline{SES}_j), \text{ where } \begin{pmatrix} 1 & x \end{pmatrix} \begin{pmatrix} 1 & 0 \\ h & c \end{pmatrix} \begin{pmatrix} \gamma_{02} \\ \gamma_{12} \end{pmatrix} = (1 \ x) \begin{pmatrix} \gamma_{02} \\ \gamma_{12} \end{pmatrix} = h\theta, \]

- Results in (over) 3839 null hypotheses of no difference in mathematical achievement scores between Catholic and public schools for each of the 3839 distinct values of relative SES, \((SES_{ij} - \overline{SES}_j)\), or \(X\).
Intercepts and Slopes Outcome Model of Math Achievement Score:

Continuous and Normally Distributed Outcome

<table>
<thead>
<tr>
<th>Fixed Effects</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>T-Value</th>
<th>Degrees of Freedom</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model for School Means (β_0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept (γ_{00})</td>
<td>12.113</td>
<td>0.1988</td>
<td>60.93</td>
<td>157</td>
<td><0.0001</td>
</tr>
<tr>
<td>Mean SES (γ_{01})</td>
<td>5.3391</td>
<td>0.3693</td>
<td>14.46</td>
<td>157</td>
<td><0.0001</td>
</tr>
<tr>
<td>Sector (γ_{02})</td>
<td>1.2167</td>
<td>0.3064</td>
<td>3.97</td>
<td>157</td>
<td><0.0001</td>
</tr>
<tr>
<td>Model for SES-Achievement (β_1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept (γ_{10})</td>
<td>2.9388</td>
<td>0.1551</td>
<td>18.95</td>
<td>7022</td>
<td><0.0001</td>
</tr>
<tr>
<td>Mean SES (γ_{11})</td>
<td>1.0389</td>
<td>0.2989</td>
<td>3.48</td>
<td>7022</td>
<td>0.0005</td>
</tr>
<tr>
<td>Sector (γ_{12})</td>
<td>-1.6426</td>
<td>0.2398</td>
<td>-6.85</td>
<td>7022</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

*Based on restricted maximum likelihood from SAS Procedure MIXED version 9.1.3

\[
\hat{A} = (\hat{\gamma}_{12})^2 - 2F_{(0.95,2,7022)} \hat{V}_{\gamma_{12}} = (-1.6426)^2 - (2 \times 2.997 \times 0.2398^2) = 2.353;
\]

\[
\hat{B} = 2 \times \left\{ (\hat{\gamma}_{02}\hat{\gamma}_{12}) - 2F_{(0.95,2,7022)} \hat{V}_{\gamma_{02}\gamma_{12}} \right\}
\]

\[
= 2 \times \left\{ (1.2167 \times -1.6426) - (2 \times 2.997 \times 0.0060) \right\} = -4.0690;
\]

\[
\hat{C} = (\hat{\gamma}_{02})^2 - 2F_{(0.95,2,7022)} \hat{V}_{\gamma_{02}} = 1.2167^2 - (2 \times 2.997 \times 0.3064^2) = 0.9176;
\]

\[
\hat{D} = (\hat{B}^2 - 4\hat{A}\hat{C}) = (-4.0690)^2 - 4 \times 2.353 \times 0.9176 = 7.920
\]
After plugging in \hat{A}, \hat{B}, \hat{C} and \hat{D} for Case I; $x < 0.266$ or $x > 1.462$

What range of SES does the mathematics achievement scores statistically differ between the Catholic high school sector (n=70) and a particular public high school (n=1)(for example, school 1296) and

Significance Region: Relative SES : -3.657 and 0.737, students from the Catholic high school sector (n=70) have greater odds of higher mathematics achievement scores than the public school 1296

Efficacy of Different Fluoride Varnish Application Frequencies in Preventing Early Childhood Caries Incidence

\[\text{Log Odds} = \begin{cases}
-1.15 + 0.52 \times \log_{10}(\text{MS (CFU/mL)}) \\
-1.93 + 0.33 \times \log_{10}(\text{MS (CFU/mL)})
\end{cases} \]

Lazar AA, PhD
Efficacy of Different Fluoride Varnish Application Frequencies in Preventing Early Childhood Caries Incidence

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Caries Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Intended Fluoride</td>
<td>160</td>
<td>33</td>
</tr>
<tr>
<td>No Fluoride</td>
<td>89</td>
<td>39</td>
</tr>
</tbody>
</table>

0.649 < MS (CFU/ml) < 6.99

CAN DO FV - children with higher baseline MS values who were randomized to receive fluoride varnish had the poorest dental caries prognosis and may have benefitted most from the preventive agent.
J-N may be an important tool in the field of personalized health care

While J-N ‘explicit solution’ assumes that the covariate has linear effects, the ‘grid’ solution does not require linearity in the covariates

J-N can make more detailed and substantial descriptions about the ‘significance region’

Acknowledgements

- Patients and participants of the RA study, High School and Beyond, CAN DO FV
- The Center to Address Disparities in Children's Oral Health (CAN DO)
- NIDCR P30 DE020752 & NCI T32 CA-09337 (AAL)
- NIH NIDCR P60DE013058, U54DE014251, U54DE019285 (CAN DO)
- Thank you for your attention.