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Comparing parameter estimates across two nested linear models 
 

Covariate-adjusted (Full) model 

 .F .FFF .xi i i c i
y a x c b eb= + + +ɺɺ ɺɺ    

 

Unadjusted (Restricted) model 

 .R .RRi i ix
by a x e= + +ɺ ɺɺ  

 

 

What is the effect of adjustment for c? 

 

. Compare .Fx
bɺ  to .Rx

bɺ , either formally or just 'eyeball' the difference 
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Comparing parameter estimates across two nested logistic models 
 

Covariate-adjusted (Full) model 

 logit(yi = 1| xi, ci)  = aF + xibx.F + cibc.F      
 

 

Unadjusted (Restricted) model 

 logit(yi = 1| xi)      = aR + xibx.R                
 

 

. Here, comparing bx.F to bx.R is more complex 

 

 

. To understand why, we'll look at the binary outcome threshold model 
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Binary outcome regression represented as a threshold model 
 

.y* is an unobserved (latent) continuous outcome variable representing  

      the propensity of outcome occurrence 

 

 
*

i i i
y a x b e= + +
ɺ ɺ ɺ

,     

 

 where 
i

e
ɺ

 ~ Logistic(0,π
2
/3) for logistic  or  N(0,1) for probit 

 

. Usually, the relationship between continuous y* and binary y is defined as 
 

 if yi* >0 then yi = 1;     
 

 else               yi = 0 

 

 

Given 
i

e
ɺ

 ~ Logistic(0,π
2
/3), model parameters for correctly specified models  

 are equivalent across  

  linear    model of y*, and  
 

  logistic model of y 
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Three identifying assumptions of logistic regression model 
 

. conditional mean of 
i

e
ɺ

 = 0 

 

. Var(
i

e
ɺ

|x) = π
2
/3 

 

. threshold value for y* is 0 (usually):  
 

    if     y* > 0 then y = 1;  
 

    else                    y = 0 
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Comparing linear and logistic regression 
 

Basics of modeled variation 

 outcome variance residual variance 
 

linear regression (y) 
 

2
σ

y
 is observed 

 

2

e
σ
ɺ
 is model-dependent 

 

logistic regression 
 

*

2
σ

y
 is model-dependent 

 

2

e
σ
ɺ

 is fixed 

 

Effects of added X variables on modeled variation 

 outcome variance residual variance 
 

linear regression (y) 
 

2
σ

y
 unchanged 

 

2

e
σ
ɺ
 decreased 

 

logistic regression (y*) 
 

*

2
σ

y
 increased 

 

2

e
σ
ɺ

 unchanged 

 

. Adding explanatory vars. to a logistic model, increases implied variance of y*  
 

. Essentially, y* is rescaled.  
 

. When y* is rescaled, model parameters are also rescaled. Same for models of y 
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Comparing parameters across nested logistic regression models 
 

 logit(yi = 1| xi, ci)   = aF + xibx.F + cibc.F     (Full model) 
 

 

 logit(yi = 1| xi)       = aR + xibx.R                (Restricted model) 
 

 

. b1.F and b1.R  may differ because of  
 

 . confounding    (expectation: bx.F < bx.R) 
 

 . negative confounding (expectation: bx.F > bx.R) 
 

 . rescaling    (expectation: bx.F > bx.R) 
 

 . a combination   (expectation: ??) 

 

 

Parameter rescaling is almost universally unknown/ignored except  

 in specific contexts 
 

 . testing mediation 
 

 . generalized linear mixed models 
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A simulated example of faux negative confounding 
 

 

 

Simulated data 
 

. A single sample with  N=500,000 
 

. x and c are bivariate normal with the following sample statistics (exactly) 
 

 . 0x c= =  
 

 . 
2 21, 4x cσ σ= =  

 

 . 0xcr =  
 

. Next, I used x and c values to generate a continuous y
*
 variate as 

 
*

i i i iy x c e= + +
ɺ

,    (i.e., both regression parameters equaled unity) 
 

 where the 
i

e
ɺ

 ~ Logistic(0,π
2
/3) 

 

. Finally, I created a binary version of y
*
 as 

 y = 1  if y
*
 > 0;    

 

 y = 0  otherwise 
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A simulated example of faux negative confounding 

 

 

Results of linear models regressing y
*
 onto x and c 

 

 Full model 

Adjusted b 

Restricted model 

Unadjusted b 

  x modeled, c excluded 1.00 1.00 

  c modeled, x excluded 1.00 1.00 

 

 

 

Results of logistic models regressing y onto x and c 
 

 Full model 

Adjusted b 

Restricted model 

Unadjusted b 

  x modeled, c excluded 1.00 0.61 

  c modeled, x excluded 1.00 0.85 
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A simulated example of faux negative confounding 

 

Explanation for results on previous slide 
 

In this simplified example, x and c are orthogonal,  

 so the implied variance of y* equals 

 

 

Full model 
 

2 2 2 2 2 2

*.F .F c.F 3 8.29y x x cb bσ σ σ π= + + =  

 

 

Restricted model including x 
 

2 2 2 2

*.R .R 3 3.66y x xbσ σ π= + =  

 

 

Scaling of the outcome and parameter estimates is not equivalent across models 
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One attempted solution in the literature 
 

. In the context of testing mediation, Winship and Mare (1984) and  

   MacKinnon & Dwyer (1993) suggested a rescaling of model parameters  

   based upon the *

2

.Fy
σ  and *

2

.Ry
σ  to allow comparison of, e.g., bx.R and bx.F 

 

. This is known as y-standardization.   

 However, it does not work very well 

 

. For the previous example, the rescaled value of bx.R equals 

 

 rescaled bx.R = 0.61 × 
*

*

2

.F

2

.R

y

y

σ

σ
 = 0.61 × 

8.29

3.66
 =0.61 × 1.51 = 0.92, not 1.00 

 

. There have been other proposed solutions that I have not studied  

 (reportedly they don't work well, either)
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Karlson, Holm, & Breen (KHB) (in press) 
 

. KHB argue that the scaling is a factor of the error standard deviation, 
e

σ , 

    not the standard deviation of y* 
 

. Of course y* and 
e

σ
ɺ

 are unobserved, in practice,  

 but given our simulated data, we can take a look 
 

. For the Full model,              2 2

.F 3 3.29
e

σ π= =
ɺ

  
 

. For the Restricted model,   2

.Re
σ
ɺ

 =          2

c
σ     + 2 3π  = 7.29 

 

 

 

. Therefore, the KHB-suggested rescaled value equals 
 

 

 rescaled bx.R = 0.61 × 
2

.R

2

.F

e

e

σ

σ
ɺ

ɺ

 = 0.61 × 
3

7.29

3π
 = 0.61 × 1.49 = 0.91, not 1.00 
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Comparing parameter rescaling methods 
 

From the earlier simulated example 

 

 b̂  
 Full model Restricted 

model 

Restricted  

*
y

σ -rescaled 

Restricted 

e
σ
ɺ

-rescaled 

x 1.00 0.61 0.92 0.91 

 

 

Regardless of these results, KHB suggest a method to rescale parameter estimates 

from binary outcome models that appears to work. 
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KHB method  
 

. Here, Ci refers to the vector of covariates in the Full model 

 

. Replace all covariates, Ci, in the Full logisitc regression model with  

 residuals from regression of Ci on x, Ri.   Name this the KHB model 

 

. The KHB model provides an estimate of the unadjusted effect of x on y  

 that is on the same scale as parameters from the Full model 

 

. Clever  

 The Ri are uncorrelated with x  
 

  The KHB model obtains an unadjusted estimate of the x effect. 

  (the KHB model obtains Type 1 estimates of the x effect). 
 

 model-dependent *
y

σ  and 
e

σ
ɺ

 are equivalent across the KHB and Full models 

  The KHB model obtains unadjusted parameter estimates for x 

  that are on the scale of the Full model.  

 

. Method easily extends to accommodate any number of x and c variables 
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KHB method 

 

What about binary covariates?   

 KHB suggest using the linear probability model (LPM)  

   to generate residuals of the Ci 

 

 Then fit the KHB model in the usual way 



SEGregorich 17 Sept 23, 2011 
 

KHB method 
 

LPM 

. Fit a linear regression model of the binary outcome 
 

. Conditional expectation of y given x,  E(yi|xi) = Pr(yi=1|x) = a + xibx + cibc 
 

. Binary y does not affect interpretation the parameters, compared to continuous y.  

 For a unit change in x, the expected change in the probability that y=1 is bx,  

 holding any control variables constant.  
 

. Because the model is linear, a unit change in x always results in the  

 same change in probability—the model is linear in the probability.   
 

. In general practice, there are problems with the linear probability model:  

 . heteroskedasticity (the variance of y|x depends on x) 

 . residuals cannot be normally distributed 

 . predicted probabilities outside [0,1] 

 . functional form 
 

Even so, the LPM could meet the needs of the KHB model 

 I.e., to estimate the unadjusted effect of x on the scale of the Full model 
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Simulation study: Population model 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unadjusted effects of x ( Rb
ɺ

) as a function of rxc: 
 

 . rxc =   0.250; Rb
ɺ

 = 0.5 +   0.250 × 0.5 × 4 = 1.00 
 

 . rxc =      0    ; Rb
ɺ

 = 0.5 +      0     × 0.5 × 4 = 0.50 
 

 . rxc = −0.125; Rb
ɺ

 = 0.5 + −0.125 × 0.5 × 4 = 0.25 

 

y; y* 

x 

(σ = 1) 

c1 

(σ = .5) 

c2 

(σ = .5) 

c3 

(σ = .5) 

c4 

(σ = .5) 

0.5 

1.0 

1.0 

1.0 

1.0 

rxc 
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Simulation Details 
 

. N=125, 250, 500, 1000 
 

. R=1000 
 

. x ~ N(0, 1) 
 

. c1 - c4 ~N(0, 0.25); or B(0.50). 2 conditions: norm./bin. c; variance = 0.25 
 

. 
x

b  = 
x

b
ɺ

 = 0.5;    
c

b  = 
c

b
ɺ

 = 1.0 
 

. rxc = 0.25;  0;  −0.125.    3 conditions: pos., no, and neg. confounding 

. rcc = 0 
 

 

 yi* = xi0.5 + c1i + c2i +c3i +c4i + i
e
ɺ

,    where  
i

e
ɺ

 ~ Logistic(0,π
2
/3) 

 

 if yi* >0 then yi = 1;    else yi = 0 

 

. y* ~ N(0, †) 
 

. y ~ B(0.50) 

 

† dependent on rxc: ranges from approximately 4.0 to 5.0
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Simulation results: N=1000. R=1000 replicate samples  
 

Continuous x and c:  

 linear reg: y* logistic reg: y KHB: y 

 (a) (b) (c) (d) (e) (f) (g) (h) 

 

  rxc 

 

�
Rb
ɺ

 2

ˆ

3

σ

π

e  
 

�
Rb  

 

(b)×(c) 

 

�
Rb
ɺɺ

 

 

�se 

 

�
Rb

σ  
 

covg. 

+0.25 1.00 1.13 0.84 0.96 1.00 0.09 0.09 0.933 

  0.0 0.50 1.14 0.41 0.47 0.50 0.07 0.08 0.929 

−0.125 0.25 1.14 0.20 0.23 0.25 0.07 0.08 0.932 

 

Continuous x and binary c:  

 linear reg: y* logistic reg: y KHB: y 

 (a) (b) (c) (d) (e) (f) (g) (h) 

 

  rxc 

 

�
Rb
ɺ

 2

ˆ

3

σ

π

e  
 

�
Rb  

 

(b)×(c) 

 

�
Rb
ɺɺ

 

 

�se 

 

�
Rb

σ  
 

covg. 

+0.25 1.00 1.11 0.91 1.00 1.02 0.11 0.11 0.953 

  0.0 0.50 1.14 0.43 0.49 0.51 0.09 0.09 0.925 

−0.125 0.25 1.13 0.21 0.24 0.25 0.08 0.09 0.928 
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Some implications about naïve point estimates of bR 
 

If you naïvely compare bF to bR, you might draw incorrect conclusions 

 

Results for continuous x and c 

rxc bF �
Rb  naïve �

Rb
ɺɺ

 KHB ∆naïve ∆true 

+0.250 0.50 0.91 1.00 +0.41† +0.50 

     0 0.50 0.43 0.50 −0.07‡ 0 

−0.125 0.50 0.21 0.25 −0.29* −0.25 

† under-estimating the degree of positive confounding  
 

‡ suggesting negative confounding when none exists 
 

* over-estimating the degree of negative confounding 

 

 

Simulations were simplistic 

 . models with multiple covariates may include those that are positively,  

  negatively, and un-confounded with x 
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More 
 

Tests of differences between adjusted and rescaled unadjusted effects 

 

 Normally I don't care about this (except in the context of testing mediation) 

 

 KHB present a test based upon Sobel. 

 

 Can accommodate multiple x and multiple c variables 

 

 Known problems with Sobel, Aroian, etc
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Conclusions 

 
. KHB model is simple to implement 

 

. Quality of KHB model point estimates 

 Seems to do a good job of obtaining rescaled unadjusted point estimates 
 

 Use of LPM for binary covariates seemed to work well 
 

 I considered other scenarios,  

  Varied the distribution of binary c and y 

  Lognormal distribution of X 
 

 KHB (2011) report upon a fairly extensive simulation study 

 

. Quality of KHB model standard errors/coverage 

 Coverage of rescaled unadjusted x effects was just OK  

  in my limited simulation. 
 

 If one wants to emphasize any tests of rescaled unadjusted effects,  

  the bootstrap should be considered 



SEGregorich 24 Sept 23, 2011 
 

Resources 
 

KHB papers (contact Kristian Karlson: kbk@sfi.dk) 

1. Kristian Bernt Karlson, Anders Holm, and Richard Breen. (March, 09, 2011). 

Comparing Regression Coefficients Between Models using Logit and Probit: A 

New Method. Draft manuscript.  

 

2. Kohler, U., Karlson, K.B., Holm, A. (in press). Comparing coefficients of 

nested nonlinear probability models. The Stata Journal.  

 

3. Breen, R., Karlson, K.B., Holm, A. (April 11, 2011). Total, Direct, and Indirect 

Effects in Logit Models. Abstract available at 

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1730065 

 

4. Karlson, K.B. and Holm, A. (2011). Decomposing primary and secondary 

effects: A new decomposition method.  Research in Social Stratification and 

Mobility, 29, 221-237. 

http://www.sciencedirect.com/science/article/pii/S0276562410000697 

 

KHB Stata ado  

http://ideas.repec.org/c/boc/bocode/s457215.html 


