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Motivation: Global Burden of HIV

High HIV prevalence in Sub-Saharan Africa
Limited financial and human resources
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Retention in HIV Care in East Africa

Background

Loss to HIV care is common in Sub-Saharan Africa
Loss to care (retention failure) is associated with high
mortality

Geng et at, Lancet HIV, 2015
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Outline: Case studies of causal inference methods
to improve retention in HIV care in East Africa

1 Example 1: Effect of nurse-based triage on retention in
HIV care (Tran et al., 2016)

The Causal Roadmap: Review of TMLE for point
treatment effects
Extension to longitudinal interventions- LTMLE

Implementation choices
Data and simulation results
Challenges and ongoing work

2 Example 2: Adaptive behavioral interventions to improve
retention in HIV care (Petersen et al., 2016)

LTMLE to evaluate dynamic regimes (adaptive treatment
strategies)

Effects of longitudinal dynamic regimes
Estimating optimal dynamic regimes
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Example 1. Low Risk Express Care (LREC)

LREC: Task-shifting HIV care for clinically stable “low
risk” patients from clinicians to nurses

- USAID- AMPATH partnership; IeDEA- East Africa
- Implemented in 15 clinics in Kenya 2007-2008

Impact of enrollment into LREC on loss-to-follow
up/death?

- Clinical cohort data: Subset of eligible “low risk” patients
enrolled at varying (non-random) times following eligibility
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The Causal Roadmap

1 Specify Causal Question
As a parameter of counterfactual distributions

2 Specify Observed Data and Statistical Model
Statistical Model: Set of possible observed data
distributions

3 Identify
Translate causal parameter into parameter of observed
data distribution (estimand)
Under explicit casual assumptions (expressed in language
of graphs or counterfactuals)

4 Estimate
Estimand + Statistical Model= Statistical Estimation
Problem
Multiple estimators: IPTW, parametric G-computation,
Double robust (including TMLE)
Different estimators → different statistical properties

see, e.g. Petersen and van der Laan (2014)
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Causal Question: Point Treatment Example

1 Time scale

90 day time scale; Baseline: First date eligible for LREC

2 Intervention (a.k.a. exposure or treatment): A

A: Indicator of immediate enrollment in LREC program

3 Counterfactual outcomes: Y (a)

Y (1): Counterfactual retention status at 18 months under
immediate enrollment
Y (0): Counterfactual retention status at 18 months under
deferred enrollment

4 Target Causal Parameter: Ex. E[Y (1)− Y (0)]:

Difference in proportion lost to care if all enrolled
immediately vs. all deferred enrollment
Focus here on E[Y (a)]
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Specify Observed Data and Statistical Model

Observed Data: n=15,225 i.i.d. copies of
Oi = (Wi ,Ai ,Yi ) ∼ P0

Baseline covariates W : age, sex, CD4 pre-ART,
urban/rural,...
Treatment A: Indicator of immediate enrollment in LREC
Outcome Y : Lost to care at 18 months (death=fail)

Statistical Model M: P0 ∈M
Model should reflect real knowledge: large enough to
contain the true P0

Probability distribution P of O can be factorized as:

P(O) = P(W )P(Y |A,W )P(A|W )

Often: Model places restrictions, if any, only on P(A|W )
propensity score or treatment mechanism

8



Introduction

Ex. 1: Care
Triage

Background

Causal Roadmap

Multiple
interventions

Simulations &
Data Analysis

Ex. 2
Adaptive
retention
interventions

Dynamic
Regimes

Optimal
Dynamic
Regimes

Simulations

Conclusion

References

Identify

W: Baseline Covariates 
(age, sex, CD4,…)

A: Immediate 
enrollment in LREC

Y: Retention at 18 
months

Causal Effect of Interest

1 Randomization assumption Y (a) ⊥⊥ A|W
Baseline covariates sufficient to control for confounding

- Holds if W blocks all backdoor paths A→ Y
(eg, Pearl (1995))

2 Positivity: P(A = a|W ) > 0 for a ∈ {0, 1}
- Ex. Violation if sickest patients never enroll immediately

Under these assumptions, can express casual parameter as a
statistical parameter (estimand)

E[Y (a)] =
∑
w

E[Y |A = a,W = w ]P(W = w)
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Estimate

Three general classes of estimator:

1 Propensity score-based

- For example, Inverse Probability of Treatment Weighted
(see eg., Robins and Rotnitzky (1992); Hernán et al. (2006))

2 Outcome Regression-based

- For example, Parametric G-computation
(see eg, Robins (1986))

3 Double robust

- For example, Targeted Maximum Likelihood
(see eg, van der Laan and Rose (2011))
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Inverse Probability of Treatment Weighting
(IPTW)

Estimate the treatment mechanism:P(A|W ):
Ex. probability of immediate enrollment given baseline
covariates
Classically: Based on parametric regression model (eg
logistic regression)

- Susceptible to bias due to model mis-specification

IPTW Estimator

ˆIPTW =
1

n

n∑
i=1

I(Ai = a)Yi

P̂(A|Wi )

or stabilized counterpart
P̂(A|W ) is estimated propensity score

Additional Limitations:
- High variance
- Unstable/biased in settings of strong confounding
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Parametric G-computation

Estimate the outcome regression: E(Y |A,W )

Ex: Probability lost to care given enrollment and covariates
Based on parametric regression model (eg. logistic
regression)

Susceptible to bias due to model misspecification

Marginal distribution of W estimated using the empirical
distribution

Parametric G computation Estimator:

ˆGcomp =
1

n

n∑
i=1

Ê(Y |a,Wi )

Ê(Y |a,Wi ) is estimated outcome regression
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Targeted Maximum Likelihood Estimation-
Motivation & Overview

Machine Learning (e.g. Super Learning) to generate an

initial (0) estimate of the outcome regression Ê0(Y |A,W )
Avoid bias due to mis-sepcified parametric models

Could just ‘plug-in” resulting estimate:

1

n

n∑
i=1

Ê0(Y |a,Wi )

But... not good for inference (95% CI, p values...)

Instead: TMLE updates initial estimate of outcome
regression Ê0(Y |A,W ) to obtain targeted estimate
Ê∗(Y |A,W )

Targeting step uses estimate of propensity score P̂(A|W )
to provide opportunity to

reduce asymptotic bias if initial Ê0(Y |A,W ) not consistent
reduce finite sample bias
reduce variance

13



Introduction

Ex. 1: Care
Triage

Background

Causal Roadmap

Multiple
interventions

Simulations &
Data Analysis

Ex. 2
Adaptive
retention
interventions

Dynamic
Regimes

Optimal
Dynamic
Regimes

Simulations

Conclusion

References

A brief introduction to Super Learning

“Ensemble” Machine Learning approach (van der Laan et al.,
2007; Breiman, 1996)

Competition of algorithms

Parametric regression models
Data-adaptive (ex. Random forest, Neural
nets)

Best team wins

Convex combination of algorithms

Performance judged on independent data: V-fold
cross validation (Internal data splits)

Partition the data into “folds”
Fit each algorithm on the training set
Evaluate its performance on the validation
set

V1fold'Cross1Valida.on'

•  The'observa.ons'in'the'
Valida.on'set'are'used'to'
assess'the'performance'
(es.mate'the'risk)'of'the'
candidate'es.mators'

•  For'example,'we'calculate'
how'well'(in'terms'of'
mean'squared'error)'each'
candidate'regression'(fit'
on'the'training'set)'does'
at'predic.ng'the'outcome'
in'valida.on'set'

Training 

Set

Validation 

Set

1

2

3

5

4

6

10

9

8

7

Fold 1

Learning 

Set

What(is(SuperLearner?(

•  Cross2valida#on:(allows(us(to(compare(

algorithms(based(on(how(they(perform(

on(independent(data(
– Par##on(the(data(in(“folds”(
– Fit(each(algorithm(on(the(training(set(

– Evaluate(it’s(performance((called(“risk”)(

on(the(valida#on(set(

•  e.g.(calculate(the(MSE(for(observa#ons(in(the(

valida#on(set(

– Rotate(through(the(folds(
43(
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Ex: 10-fold cross-validation

Rotate through the folds

Average performance estimates across the folds

Choose the algorithm (or “team”) with the best
performance
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TMLE Algorithm for E[Y (a)]

1 Obtain initial estimate of the outcome regression:
Ê0(Y |A,W )

2 Target (update) the initial estimate (logit scale)

Ê∗(Y |A,W ) = Ê0(Y |A,W ) + ε̂

Maximum likelihood to fit ε: Logistic regression of Y on

intercept, using Ê0(Y |A,W ) as offset and weights I(A=a)

P̂(A|W )

Update model constructed to ensure that fitting ε solves
the efficient influence curve (EIC) estimating equation
(confers double robustness)

3 Plug in (“targeted”) estimate of outcome regression:

ˆTMLE =
1

n

n∑
i=1

Ê∗(Y |a,Wi )
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Targeted Maximum Likelihood Estimation:
Properties

Double Robust
- Consistent if either E(Y |A,W ) or P(A|W ) estimated

consistently

Efficient
- Lowest (asymptotic) variance among reasonable estimators

if both E(Y |A,W ) AND P(A|W ) estimated consistently
at reasonable rates

Can incorporate Machine Learning
- To estimate E(Y |A,W ) AND P(A|W ) while maintaining

valid statistical inference (meaningful p values and
confidence intervals)

- Not a guarantee- still need estimators of these quantities
to converge fast enough

Substitution (aka ”plug in”) Estimator
- Improved robustness to sparse data compared to

estimating equation alternatives
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Example code: ltmle R package
TMLE for point treatment: E[Y (0)]

Schwab et al. (2013); link to ltmle vignette

> data

W A Y

1 -1.2070657 0 1

2 0.2774292 0 0

3 1.0844412 1 1

> r <- ltmle(data ,Anodes = "A",Ynodes = "Y",abar = 0)

> summary(r)

Estimator: tmle

ltmle(data = data ,Anodes = "A",Ynodes = "Y",abar = 0)

Parameter Estimate: 0.50682

Estimated Std Err: 0.0075484

p-value: <2e-16

95% Conf Interval: (0.49203 , 0.52162)

18
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Example code: ltmle R package
IPTW and G-comp for point treatment: E[Y (0)]

Schwab et al. (2013); link to ltmle vignette

> summary(r, estimator = "iptw")

Estimator: iptw

Call:

ltmle(data = data ,Anodes = "A",Ynodes = "Y",abar = 0)

Parameter Estimate: 0.50285

Estimated Std Err: 0.0082819

p-value: <2e-16

95% Conf Interval: (0.48662 , 0.51908)

> ltmle(data ,Anodes = "A",Ynodes = "Y",abar = 0,

gcomp = TRUE)

GCOMP Estimate: 0.5038029

19
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Example code: ltmle R package
TMLE for point treatment: E[Y (1)− Y (0)]

Schwab et al. (2013); link to ltmle vignette

> r <- ltmle(data , Anodes = "A",

Ynodes = "Y", abar = list(1, 0))

> summary(r)

Estimator: tmle

Additive Treatment Effect:

Parameter Estimate: 0.19383

Estimated Std Err: 0.010055

p-value: <2e-16

95% Conf Interval: (0.17412 , 0.21354)

Relative Risk:

Parameter Estimate: 1.3824

Est Std Err log(RR): 0.017493

p-value: <2e-16

95% Conf Interval: (1.3358 , 1.4307)

20
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Beyond single time point static interventions...

Extending the roadmap to more complex causal questions

1 Effects of multiple interventions

longitudinal interventions

2 Effects of adaptive interventions

dynamic regimes

21
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Beyond single time point static interventions...

Extending the roadmap to more complex causal questions

1 Effects of multiple interventions
Longitudinal interventions

2 Effects of adaptive interventions

dynamic regimes

22



Introduction

Ex. 1: Care
Triage

Background

Causal Roadmap

Multiple
interventions

Simulations &
Data Analysis

Ex. 2
Adaptive
retention
interventions

Dynamic
Regimes

Optimal
Dynamic
Regimes

Simulations

Conclusion

References

Effects of multiple interventions

Motivating causal question: Effect of enrollment into
LREC on retention?

Effect of a single time point treatment:
Ex. E[Y (1)− Y (0)]: Difference in retention (loss to care)
if all eligible did vs. did not enroll immediately in LREC

Effect of a decision or action at a single time point
But wait... Counterfactual Y (0): Retention status if did
not enroll immediately (first 90 days)

Could have enrolled after 90 days...

What if we want to know about the effect of enrolling
immediately versus never enrolling?

Requires intervention at multiple time points: don’t enroll
in first 90 days or in second 90 days or...
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Longitudinal Observed Data

Longitudinal data are also more complex

Discrete time scale: 90 days (clinic visit interval)

- t = 0, . . . , 6 (18 months)

Covariates Wt :

Baseline: age, sex, CD4 pre-ART, urban/rural,...
Time-varying: recent and nadir CD4, ART regimen,
adherence, TB, pregnancy, ...

Outcome Yt : Indicator lost to care (or died) by t

Exposure Et : Indicator enrolled in LREC program by t

Right censoring Ct : Indicator transferred to clinic with
no LREC program (or database closure) by t

24
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Notation: Longitudinal Observed Data

“Non-intervention” nodes: Lt = (Yt ,Wt)

- L̄t = L0, . . . , Lt

“Intervention” nodes: At = (Et ,Ct)

- Āt = A0, . . . ,At

Censoring treated as an additional “intervention” node:
evaluate effect of enrollment in the absence of censoring

We observe n = 15, 225 i.i.d. copies of

O = (L0,A0, . . . , L5,A5, L6) = (L̄6, Ā5) ∼ P0
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Statistical Model

Probability distribution P of O can be factorized as:

P(O) =
6∏

t=0

P(Lt |L̄t−, Āt−)
5∏

t=0

P(At |L̄t , Āt−)

Statistical model places restrictions, if any, only on
treatment mechanism
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Target Causal Parameter: Multiple interventions

Intervention-Specific Mean: Probability lost to care by
18 months (t = 6) if

- Never enrolled in LREC and censoring prevented:
E[Y6(ē = 0, c̄ = 0)] ≡ E[Y6(0̄)]

- Enrolled immediately in LREC and censoring prevented:
E[(Y6(ē = 1, c̄ = 0)] ≡ E[Y6(1̄)]

Average Treatment Effect: Difference in probability lost
to care by 18 months if enrolled immediately vs never
enrolled (and censoring prevented):

- E[Y6(1̄)− Y6(0̄)]
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Identification for longitudinal treatments

Causal graph (simplified for illustration)

E0:Enrollment (t=0) E1:Enrollment (t=1)

W0:Health (t=0) W1:Health (t=1)

Y2: Survival (t=2)

Causal Effects of Interest
• Including effects mediated by  interim health

28
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The challenge of time-dependent confounding

E0:Enrollment (t=0) E1:Enrollment (t=1)

W0:Health (t=0) W1:Health (t=1)

Y2: Survival (t=2)

Causal Effects of Interest
• Including effects mediated by  interim health

Time-dependent 
confounder

Covariates needed to block back-door paths are affected
by earlier exposure (see, e.g. Robins (1989))
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Identification Assumptions (1)

E0:Enrollment (t=0) E1:Enrollment (t=1)

W0:Health (t=0) W1:Health (t=1)

Y2: Survival (t=2)

Causal Effects of Interest
• Including effects mediated by  interim health

Time-dependent 
confounder

Sequential randomization (Robins, 1989)

Y6(ā) ⊥⊥ At

∣∣L̄t , Āt−1 : t = 0, . . . , 5

- Apply back door criteria to each intervention node in
sequence (Pearl and Robins, 1995)

30



Introduction

Ex. 1: Care
Triage

Background

Causal Roadmap

Multiple
interventions

Simulations &
Data Analysis

Ex. 2
Adaptive
retention
interventions

Dynamic
Regimes

Optimal
Dynamic
Regimes

Simulations

Conclusion

References

Identification assumptions (2)

Positivity

P(At = at |Āt−1 = āt−1, L̄t) > 0, t = 0, . . . , 5

for all regimes of interest

Ex: Needs to hold for ā ∈ {(ē = 1, c̄ = 0), (ē = 0, c̄ = 0)}
Example: Positivity violation

- Patients who lose eligibility have zero probability of
enrolling

- Regimes such as “enroll two time points after eligibility”
would not be supported
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Longitudinal G computation formula

Under sequential randomization and positivity, the
intervention-specific mean outcome is identified as (Robins,
1986):

E(Y6(ā)) =
∑
l̄5

(
E(Y6|Ā5 = ā5, L̄5 = l̄5)

5∏
t=0

P(lt |Āt−1 = ā, L̄t−1 = l̄t−1)
)

Analog to point treatment, uses expectation of outcome conditional

on exposure and confounding covariate history

Ex. Probability of loss to care by 18 months given
uncensored, never enrolled, and full covariate history

Because some of these covariate values affected by earlier exposure,

now need to “standardize” to a different distribution of covariates

The “post-intervention” covariate distribution
Ex. the values the time-varying covariates would have had
if never censored and never enrolled

32



Introduction

Ex. 1: Care
Triage

Background

Causal Roadmap

Multiple
interventions

Simulations &
Data Analysis

Ex. 2
Adaptive
retention
interventions

Dynamic
Regimes

Optimal
Dynamic
Regimes

Simulations

Conclusion

References

Parametric G-computation

Estimate the components of the longitudinal
G-computation formula directly

- Non-intervention factors of the likelihood: Conditional
distributions (densities) of non-intervention covariates
given the past

P(O) =
6∏

t=0

P(Lt |L̄t−, Āt−)
5∏

t=0

P(At |L̄t , Āt−)

Classically, based on parametric regression models

- Susceptible to bias due to model mis-specification

(Robins, 1986)
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Inverse Probability of Treatment Weighting
(IPTW)

Estimate the treatment mechanism
- Treatment mechanism: Conditional probability of exposure

and censoring given the past

P(O) =
6∏

t=0

P(Lt |L̄t−, Āt−)
5∏

t=0

P(At |L̄t , Āt−)

Ex. For each time point (t = 0, ...5), estimate
Probability enroll in LREC given not already enrolled,
uncensored, and past covariates
Probability remain uncensored given enrollment history,
previously uncensored, and past covariates

Based on parametric regression models
- Susceptible to bias due to model mis-specification

Data-adaptive/Super Learning methods
- Challenges for inference

(Robins and Rotnitzky, 1992; Hernán et al., 2006)
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Alternative representation of the longitudinal
G-computation formula

Can rewrite longitudinal G-comp formula using iterated
conditional expectations (ICE) (Robins, 2000; Bang and

Robins, 2005):

E
[
...
[
E
[
E
[
Y6|L̄5, Ā5 = ā5

]
|L̄4, Ā4 = ā4

]]
...
]

Basis for alternative parametric G-computation and double
robust estimators

Advantage: Lower dimensional set of “non-intervention
factors”

Series of conditional expectations vs. conditional densities
Easier to estimate well
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ICE G-computation Estimator

Parametric regression models to estimate series of conditional
expectations (nested outcome regressions) (Robins, 2000; Bang

and Robins, 2005)

1 Estimate inner most conditional expectation (t = 6)

- Regress outcome Y6 on past (Ā5, L̄5)
- Generate predicted values by evaluating at Ā5 = ā5

2 Estimate next conditional expectation (t = 5)

- Use predicted values from prior step as new “outcome”
- Regress on past (Ā4, L̄4)
- Generate predicted values by evaluating at Ā4 = ā4

3 Repeat for t = 4, ..., 1

4 Take empirical mean
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Longitudinal TMLE

Properties

Double robust: Consistent if either ICEs or treatment
mechanism:

∏5
t=0 P(At |L̄t , Āt−1) estimated consistently

Efficient in semiparametric statistical model if both
estimated consistently (at reasonable rates)

Can incorporate Machine Learning: But care needed-
more coming up...

Substitution estimator: i.e. ‘plug-in” estimator; may
perform better in sparse data settings

Robins (2000); Bang and Robins (2005); Robins et al. (2007); van der
Laan and Gruber (2012)
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TMLE Algorithm for E[Y (ā)]

Analog to the ICE G-comp estimator, with two differences

1 Can generate initial estimate of each conditional
expectation (i.e. iterated outcome regression) using
machine learning

2 Before fitting the next conditional expectation, update the
initial fit

Approach analogous to single time point TMLE
Update uses an inverse propensity score-based weight
Confers double robustness properties
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L-TMLE Algorithm: Example

1 For inner-most conditional expectation (t = 6):
E
[
Y6|L̄5, Ā5 = ā5

]
1 Generate initial estimate

- Using Super Learning

2 Update initial estimate (as for single point)

- Use MLE to fit an intercept only logistic regression
- Initial fit as offset
- Using weights I(Ā5 = ā5)/

∏5
j=0 P̂(Aj |L̄j , Āj−1)

- Treatment mechanism can be estimated using Super
Learning

2 Repeat for next conditional expectation (t = 5)...
1 Generate initial fit using predicted value from prior step as

“outcome”
2 Update, using weight I(Ā4 = ā4)/

∏4
j=0 P̂(Aj |L̄j , Āj−1)

3 Repeat for t = 4, ..., 1

4 Take empirical mean
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ltmle R package: Effects of multiple interventions

Syntax

“Anodes”: treatment or exposure nodes

LREC Example: Enrollment in LREC: Et , t = 0, ..., 5

“Cnodes”: Indicator of right censoring

LREC Example: Transfer to new clinic by time t: Ct ,
t = 0, ..., 5

“Lnodes”: Time varying covariates

LREC Example: CD4 count, etc. at time t: Wt ,
t = 1, ..., 5

“Ynodes”: Outcome or outcomes

LREC Example: Indicator lost to care by t: Yt , t = 1, ..., 6
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Example R code: Estimation of E[Y (0̄)] in ltmle
package

> head(data)

W A1 L A2 Y

1 -1.3435214 0 -1.4164248 0 0

2 0.6217756 1 1.0621048 1 1

3 0.8008747 1 0.2808690 1 0

4 -1.3888924 0 -0.8677043 0 0

5 -0.7143569 1 -0.9064954 1 0

6 -0.3240611 1 0.7103158 0 0

> ltmle(data , Anodes = c("A1", "A2"), Lnodes = "L",

Ynodes = "Y", abar = c(0, 0))

TMLE Estimate: 0.5128132
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Example R code: Estimation E[Y (ā)] for ā = (1, 0)
in ltmle package, with censoring

> head(data)

W A1 C L A2 Y

1 1.3514112 1 censored NA NA NA

2 0.1854795 1 censored NA NA NA

3 0.4315265 0 uncensored 0.1251185 0 0

4 -0.1906075 1 censored NA NA NA

5 -0.9715509 1 uncensored 0.3115363 1 0

6 0.7680671 1 uncensored 0.6744166 0 1

#set all A1 to 1, set all A2 to 0,

#set C to uncensored , use glm

> ltmle(data , Anodes = c("A1", "A2"), Cnodes = "C",

Lnodes = "L", Ynodes = "Y", abar = c(1, 0))

TMLE Estimate: 0.4704012

link to ltmle vignette
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Example R code: Estimation E[Y (ā)] for ā = (1, 0)
in ltmle package, using SuperLearner

#set all A1 to 1, set all A2 to 0,

#set C to uncensored , use default SuperLearner library

> ltmle(data , Anodes=c("A1", "A2"), Cnodes = "C",

Lnodes ="L", Ynodes ="Y", abar = c(1, 0),

SL.library = "default ")

TMLE Estimate: 0.4692075

link to ltmle vignette
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Example R code: Additive Treatment Effect and
Relative Risk

> result <- ltmle(data , Anodes=c("A1", "A2"), Cnodes = "C",

Lnodes ="L", Ynodes ="Y", abar=list(c(1, 0), c(1, 1)))

> summary(result)

Treatment Estimate:

Parameter Estimate: 0.42744

Estimated Std Err: 0.086301

p-value: 7.3109e-07

95% Conf Interval: (0.2583 , 0.59659)

Control Estimate:

Parameter Estimate: 0.29593

Estimated Std Err: 0.046223

p-value: 1.5315e-10

95% Conf Interval: (0.20533 , 0.38653)

Additive Treatment Effect:

Parameter Estimate: 0.13151

Estimated Std Err: 0.097835

p-value: 0.17887

95% Conf Interval: ( -0.06024 , 0.32327)

Relative Risk:

Parameter Estimate: 1.4444

Est Std Err log(RR): 0.25507

p-value: 0.14943

95% Conf Interval: (0.87614 , 2.3812)

link to ltmle vignette
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Challenge: Estimation of treatment mechanism and
outcome regressions

Need that initial fits of the outcome regressions not be too
overfit

Internal sample splitting approaches relax this (Zheng and
van der Laan, 2011)

Not implemented in ltmle package (yet!)

Be careful of default in package
- Default: logistic regression (glm) with all past variables as

main terms
- If using a parametric model for treatment mechanism and

outcome regressions, specify carefully and consider a priori
reduction in adjustment variables

Ex. Background knowledge (eg most recent values of
time- varying covariates)
Ex. Marginal association with the outcome
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Challenge: Estimation of treatment mechanism and
outcome regressions

DR estimators make it possible to use machine-learning
approaches to estimate treatment mechanism and
outcome regressions

- Doesn’t guarantee they will work well enough

If using Super Learning (or other machine learning) to
estimate treatment mechanism and outcome regressions,
need estimates to converge to truth fast enough

- If can estimate treatment mechanism with a correctly
specified parametric model (e.g. an RCT), then just need
estimators of outcome regressions to be consistent

- Remains a challenge in high dimensional data

Some progress on this front: Highly Adaptive LASSO
(van der Laan, 2017)

Choose your machine learning library carefully
- see eg, Schomaker et al. (2018); Tran et al. (2010, 2016)
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Challenge: “Practical” positivity violations

Poor support for regime (treatment history) of interest

- Ex:
∏5

t=0 P(At = āt |Āt−1 = āt−1, L̄t) is small
- Problem increases with increasing number of time points
- Ex: Small probability of not enrolling given healthy at each

time point → product can get very small

Can lead to both bias and underestimates of variance
(see eg Petersen et al. (2012, 2014); Tran et al. (2010))

Some (partial) responses (defaults in ltmle package)

1 Use a substitution estimator (G-computation, TMLE)

- But a challenge for all estimators

2 Use robust variance estimator (Tran et al., 2018)

- ”blows up” when confidence intervals become unreliable

3 Bound estimated propensity score away from 0
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Simulations: In care survival if never enroll

Correctly specified parametric models to estimate iterated
outcome regressions and treatment mechanism

- Positivity violations increase with increasing time points

Choice of estimator can make a difference
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Real Data: Effect of Low risk Express Care

TMLE+Super Learning to estimate propensity scores and
outcome regressions
Results: LREC enrollment appears to improves retention
outcomes

Results consistent with better control of confounding by
TMLE if patients who become sick less likely to enroll
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Beyond multiple time point static interventions...

Extending the roadmap to more complex causal questions

1 Effects of multiple interventions

longitudinal interventions

2 Effects of adaptive interventions
Longitudinal dynamic regimes
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HIV+ persons face diverse barriers to retention

Structural (eg. transport too expensive)

Psycho-social (eg. patient-clinic interactions)

Medical (e.g. too sick to travel to clinic)
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Dynamic regimes to optimize retention in HIV care

Motivation:

Several behavioral interventions with proven efficacy
(compared to standard-of-care):

- SMS text messages: reminders and support
- Travel Vouchers: small conditional cash incentives for

on-time visits
- Peer Navigators: relationship-based support for overcoming

barriers to care

Hypothesis: Any one-size-fits-all approach will be

- Inefficient - many patients will do well with no
intervention

- Sub-optimally effective - failing to help some in need by
assigning them an intervention less likely to work for them
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Precision Medicine/Public Health: The challenge

Objective: Improve effectiveness and efficiency by
targeting interventions based on individual characteristics

Dynamic regime: A rule for assigning and modifying an
intervention based on evolving individual characteristics

Ex. Target causal parameters:
- Expected outcome under a specific longitudinal regime

Mean outcome if all subjects had followed a given rule?

- Optimal dynamic regime

What rule would result in best mean outcome if all
subjects followed it?

- Expected outcome under optimal regime

Mean outcome if all subjects followed optimal rule
(compared to some alternative)?
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ADAPT-R Trial: Adaptive strategies to improve
retention in HIV Care

Sequential Multiple Assignment Randomized Trial
(NCT02338739; PIs: Geng, Petersen)

1800 HIV patients initiating ART in Kenya

Objective: Develop and evaluate adaptive treatment
strategies (aka ”dynamic regimes”) to optimize retention
in HIV care
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ADAPT-R Trial: Data and Model

Data
- Baseline covariates L0:

- V : Wealth
- S0: Patient satisfaction with care

- 1st-line intervention A0: SMS, Voucher, Education
- Time-varying covariates L1:

- Y1: “Retention failure,” 14 days late for visit
- S1: Updated satisfaction with care

- 2nd -line Intervention A1:

- If fail (Y1 = 1): SMS+Voucher, Navigator, Outreach
- If don’t fail (Y1 = 0): continue or stop 1st-line

- Outcome Y2: Viral failure at year 2

Statistical model makes assumptions only on g

Randomization: g0(A0|L0) and g0(A1|L0,A0, L1) known
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Target Parameter: Regime-specific mean outcome

Decision rule: dt(l̄t) assigns an “intervention” value at
based on observed past at time t

Dynamic regime: set of rules, one for each time point
d = (d0, d1...) ∈ D

- ADAPT-R: Simple example of a rule d :

SMS at ART start

d0 : A0 = SMS

If 14 days late, escalate to Peer Navigator (Nav),
otherwise stop SMS

d1 : If Y1 = 1 then A1 = Nav , else A1 = stop

Regime-Specific Mean E(Y2(d)): Counterfactual
probability of viral failure if followed rule d
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Identification and Estimation

Identification assumptions: Analogous to longitudinal
“static” regime

1 Sequential randomization
2 Positivity

- Both hold by design in sequentially randomized trials

Estimators:Analogous to longitudinal “static” regime

1 G-computation (including ICE version)
2 IPTW
3 LTMLE

- Simply evaluate for treatment and covariate history that
correspond to regime of interest

Ā = d̄(L̄)
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Example R code: Estimate of E[Y (d)] for a simple
data structure and regime d in ltmle package

Data: W ,A1, L,A2,Y
Dynamic regime d of interest is:

- Always treat at time 1 (A1 = 1)

- Treat at at time 2 (A2 = 1) if L > 0

> abar <- matrix(nrow=n, ncol =2)

> abar[, 1] <- 1

> abar[, 2] <- L > 0

> ltmle(data , Anodes=c("A1", "A2"),

Lnodes ="L", Ynodes ="Y", abar=abar)

TMLE Estimate: 0.3061747

link to ltmle vignette
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Optimal rule for assigning retention interventions?

Optimal Regime: dopt ∈ D that minimizes E (Y2(d))

- E (Y2(d)): Probability fail at year 2 under rule d

Option 1: Estimate E (Y2(d)) for each d
(e.g. Zhao and Laber (2014) )

Requires each rule d ∈ D be supported

Option 2: Dynamic Marginal Structural Working Model
(Robins, 1999; Van der Laan and Petersen, 2007)

Lower dimensional summary of how E (Y2(d)) varies as a
function of d
Possibly conditional on a subset of baseline covariates V
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Example: Marginal Structural Working Model

Consider limited set D based on satisfaction threshold θ
- dθ

0 (S0): If S0 > θ then Voucher, else SMS
- dθ

1 (S1):
- If Y1 = 0 then stop 1st -line
- If Y1 = 1 and S1 > θ then Voucher+SMS, else Navigator

- E (Y2(θ)): Expected outcome under rule dθ

Optimal threshold θ?
- Does optimal threshold differ depending on wealth V ?

Pose following working model mβ(θ,V ) for E0(Y2(θ)|V ):

mβ(θ,V ) = expit(β0 + β1θ + β2θ
2 + β3V + β4θV )

- Working model-specific optimal regime given V :

θ∗(V ) ≡ arg min
θ

mβ(θ,V ) =
β1

2β2
− β4

2β2
V
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ADAPT-R: Marginal Structural Working Model
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2
(θ
)|V

)

V = -1

V = 0

V = 1

Truth
mβ0(θ, V )
Minimum

Misspecified Model → Working model-specific optimal
θ∗(V ) may differ from true optimal θopt

- Data adaptive estimation of the MSM (Petersen et al., 2016)
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Ex. Estimators of Longitudinal Dynamic Marginal
Structural Model Parameters

Analogous classes of estimator:

1 IPTW (Robins, 1999; Van der Laan and Petersen, 2007)

2 DRICE (Robins, 2000; Bang and Robins, 2005):

Double robust and semiparametric efficient
Uses sequential regression methodology
Defined as solution to estimating equation

3 LTMLE (Petersen et al., 2014)

Double robust and semiparametric efficient
Substitution estimator

Implementation more complex

Implemented in ltmle R package
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Outcome under estimated optimal regime

Estimate of β in MSM gives estimate of

Optimal threshold

θ∗(V ) ≡ arg min
θ

mβ(θ,V )

=
β1

2β2
− β4

2β2
V

= α0 + α1V

Inference on expected outcome under optimal threshold
E (Y (θ∗(V ))) (Zhang et al., 2013)

Simply construct confidence interval for E (Y (θ)), plugging
in estimated optimal rule θ∗n(V ), and ignoring that it was
estimated
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Simulation: Covariate adjustment with TMLE
reduces variance

All estimators unbiased with good 95% CI coverage
(Petersen et al., 2016)
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Summary: Longitudinal Dynamic Regimes

Double Robust ICE Estimators incl. TMLE

Available for regime specific mean, MSM parameters,
optimal regime, and expected outcome under optimal
regime
Observational data: Reduce bias and variance
Sequentially randomized trials: Reduce variance

Practical positivity violations

Ubiquitous in longitudinal data
Despite partial solutions: still a major concern

Optimal dynamic regime (within a restricted class)

- Directly or using marginal structural working model
- Inference on both the optimal rule and expected outcome

under optimal rule
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ltmle R package

Causal effect estimation with multiple intervention nodes

Intervention-specific mean under longitudinal static and
dynamic interventions
Static and dynamic marginal structural working models
Controlled Direct Effects

General longitudinal data structures

Repeated measures outcomes (including survival)
Right censoring
Hierarchical data

Estimators

IPTW
ICE G-comp (no inference)
TMLE

Options include nuisance parameter estimation via glm
regression formulas or calling SuperLearner()
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