Applying machine learning techniques in STATA to predict poor health outcomes using HIV-related data

Rachel Brathwaite, PhD CAPS Methods Core Town Hall, UCSF

December 14th, 2021

St.Louis Washington University in St.Louis

Outline

- Brief introduction to prediction modeling
- Brief background and introduction to hypothetical research question
- Lasso regression in STATA 17 (commands and interpretation of results)

Prediction modeling definition and applications

- Prediction models are tools that predict an individual's risk of developing a health outcome.
- A prediction model/risk calculator is one tool that can provide estimated absolute risks of a future event for individuals based on their unique combination of characteristics (Moons et al., 2009).

• Prediction modeling involves a series of steps designed to create the best model to predict an outcome.

European Heart Journal (2014) **35**, 1925–1931 doi:10.1093/eurheartj/ehu207 REVIEW

Statistical tutorials

Towards better clinical prediction models: seven steps for development and an ABCD for validation

Ewout W. Steyerberg* and Yvonne Vergouwe

Department of Public Health, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands

Received 7 October 2013; revised 22 April 2014; accepted 30 April 2014; online publish-ahead-of-print 4 June 2014

7 Steps in development of prediction model (Steyerberg & Vergouwe, 2014)

Purpose	Description
1. Problem definition and data inspection	Understand research question, outcome, define predictors, understand data available
2. Coding of predictors	How to code predictors in the dataset, categorical or continuous
3. Model specification	Which methods to use for selecting predictors (Lasso)
4. Model estimation	Run the model to obtain regression coefficients for predictors
5. Model performance	Evaluate how well the model works, discrimination and calibration
6. Model validation	Conducting internal validation to reduce likelihood of overfitting
7. Model presentation	How will model be presented for use- formula, computerized program, online version etc.

Applications of prediction models

- Can inform clinicians about:
 - Risk of developing a disease
 - Risk of presence of a disease
 - Risk of future course of an illness
- Applications:
 - Screening- identify signs of disease early
 - Personalized medicine- supports individualized clinical decision making.
 Who is most likely to benefit from treatment, Who is most at risk of adverse outcomes?
 - Minimize costs to healthcare system (efficient use of resources)

Questions to ask prior to developing the model

- Who is the target population we want to make predictions for? (Adolescents living with HIV in Uganda)
- What is the outcome we wish to predict? (depression)
- What statistical technique we wish to use? (Lasso regression)

*Prediction-Interested in correlation not causation

Background to research question

- Adolescence is a critical developmental period
 - Increased vulnerability to neurological, mental and substance-use disorders
- Young people affected by HIV/AIDS in Uganda and other SSA countries are expected to face additional challenges as they transition through adolescence and young adulthood while living in resource-poor settings
- Living with HIV elevates one's risk of poor mental health outcomes

Background

- Maintaining good mental health in childhood and adolescence is essential for avoiding poor mental health functioning, even suicide.
- For ALWHIV, Depression is associated with:
 - Poor linkage to care
 - Failing to initiate and adhere to ART medications
 - Increased viral load, susceptibility to opportunistic illnesses
 - Increased engagement in risky sexual behaviors—transmission to others

Background

- Given that in SSA, there is only one child psychiatrist for every 4 million people.
- Alternative non-clinical tools that can help identify/predict which ALWHIV are at higher risk of being depressed are needed.
- Individualized risk assessment approaches have the potential to advance our understanding, specifically in identifying adolescents at risk for poor health outcomes even before these outcomes occur.

Background

- This can help in identifying at-risk adolescents, and also to develop and/or implement interventions to mitigate this risk.
- A prediction model/risk calculator is one tool that can provide the estimated risk of depression for ALWHIV based on their unique combination of characteristics

Dataset: Suubi+Adherence study

condition

19 clinics to Intervention condition

Inclusion criteria for Suubi+Adherence

- 1. Medically diagnosed with HIV and aware of their HIV status;
- 2. Living within a family (could be biological family or caregiver, but not an institution);
- 3. Aged 10 to 16 at baseline;
- 4. Prescribed ART medication and;
- 5. Receiving HIV care and treatment at one of 39 clinics enrolled.

7 Steps in prediction modelling

(Steyerberg & Vergouwe, 2014)

	Define the prediction problem: define predictors and outcome of interest
\mathbf{v}_{2}	Code predictors
3	Specify a model
4	Estimate model parameters
5	Model evaluation
6	Model validation
\bigvee_{7}	Presentation of the model

Step 1: Defining problem, predictors and outcome of interest

- Research Question: Which combination of multi-level factors can predict depression in one year's time among ALWHIV in Uganda?
- Outcome: Depression (as measured by the 14-item version of the Children's Depression Inventory)
- In this hypothetical example depression is defined as those scoring above the mean depression score in the dataset.

Description of the dataset

. tab depression if depression !=. & disclosure_status !=. & HIV_stigma !=. & adherence_s > elf_efficacy !=. & adherence_history !=. & hopelessness !=. & caregiver !=. & social_s > upport !=. & family_cohesion !=. & agegroup !=. & sex !=. & distance !=. & substance_us > e !=. & ART_buddy !=. & intervention_group !=. & child_poverty !=. & assets !=.

depression	Freq.	Percent	Cum.
notdepressed depressed	346 217	61.46 38.54	61.46 100.00
Total	563	100.00	

- We will use the dataset comprising complete cases in this example (N=563)
- 217 ALWHIV with depression outcome (hypothetical example)

Using Modified Social Ecological Model as a framework- multi-level factors influence outcome Question: What is already known about the predictors from the literature?

INDIVIDUAL LEVEL					
<u>Demographics</u>					
Age group	13-17=0/≥18=1				
Biological sex	Male=0/female=1				
<u>Behavioral</u>					
Substance use	Never used=0/used=1				
History of ART Adherence	Good adherence=0/poor adherence=1				
<u>Psychosocial</u>					
Hopelessness	20-item Beck Hopelessness Scale total score				
Adherence self-efficacy	12-item HIV treatment adherence Self-Efficacy Scale total score				
HIV disclosure	None=0/few or some or all=1				
Health-related					
Viral load	<40 copies per ml= $0/\geq 40=1$				

HOUSEHOLD LEVEL					
ART treatment supporter	Yes=1/No=0				
Family cohesion	6-item family environment scale total score				
Caregiver type	Biological=0/non-biological=1				

COMMUNITY/STRUCTURAL LEVEL

HIV-related stigma	9-items from Berger Stigma Scale total score
Social Support Network	12-items from adapted Social Support Behaviors Scale total score
Distance to health facility	Distance from home to hospital/health clinic: very near to near=0/ very far to far=1

	EC	ONO	MIC L	EVEL
--	----	-----	--------------	------

Asset ownership	20-item asset index: high possession=0/low possession=1		
Child poverty	6-item		
Economic group assignment	Control=0/Intervention=1		

7 Steps in prediction modelling

(Steyerberg & Vergouwe, 2014)

	• Define the prediction problem: define predictors and outcome of interest
2	Code predictors
3	• Specify a model
	Estimate model parameters
5	Model evaluation
6	Model validation
	• Presentation of the model

 $\overrightarrow{\mathbf{x}}$

Step 3. Specify a model

- As described above we are referring to previous studies and clinical knowledge (guided by the social ecological model) to decide which predictors to include in the full model
- Predictors selected using lasso regression

7 Steps in prediction modelling

(Steyerberg & Vergouwe, 2014)

	• Define the prediction problem: define predictors and outcome of interest
2	Code predictors
3	• Specify a model
4	Estimate model parameters
5	Model evaluation
6	Model validation
	Presentation of the model

 $\overrightarrow{\mathbf{x}}$

Step 4: Model estimation

- All predictors may not be contributing to the outcome.
- We are interested in selecting the best subset of predictors of depression from the list above, hence we use the least absolute shrinkage selection operator (LASSO)
- Since we have a binary outcome (depressed vs not depressed) we specify a lasso logistic regression model

Lasso vs Ordinary least square regression

- LASSO is a supervised machine learning method for prediction.
- In traditional Ordinary Least Square regression (coefficients estimated by minimizing least square, all predictors remain in the model, add variance to prediction of outcome)
- LASSO determines which predictors are relevant for predicting the outcome by applying a penalty term (lambda) to least square. This causes some regression coefficients to shrink to zero, excluding them from the model, resulting in a simpler model. As lambda increases, more variables excluded from model

Cross-validation (resampling technique)

- Prediction modelling is concerned with how well model will perform in new cases (generalizability)
- k-fold (10-fold) crossvalidation helps generate a more realistic estimate of predictive performance in new cases (allows model to learn underlying distribution better)
- CV prevents overfitting, improves ability to generalize to new data

When we have limited data, dividing the dataset into Train and Validation sets may cause some data points with useful information to be excluded from the training procedure, and the model fails to learn the data distribution properly.

We will use 10-fold CV for selecting lambda during lasso regression and for determining the AUC

Examples of overfitting

Black line - fits data well Green line - is over fitted to the data

Example of lasso logistic regression in Stata 17

. lasso logit depression i.disclosure_status i.caregiver i.agegroup i.sex i.distance i.substance_use

> i.ART_buddy i.intervention_group i.asset i.viral_load_t4 i.adherence_history child_poverty HIV_stig

> ma adherence_self_efficacy hopelessness social_support family_cohesion, selection(cv) rseed(1234) f

> olds(10) cluster(clinic_id)

cluster: accounts for potential correlation between observations in the same clinic

selection(cv) & folds(10): select lambda by 10-fold cross-validation

rseed(1234): set random-number seed to ensure reproducibility

Lasso logit model	No.	of	obs	=	563
	No.	of	covariates	=	29
Cluster : clinic_id	No.	of	clusters	=	39
Selection: Cross-validation	No.	of	CV folds	=	10

1	ID	Description	lambda	No. of nonzero coef.	Out-of- sample dev. ratio	CV mean deviance
	1	first lambda	.1675651	0	-0.0046	1.35559
1	15	lambda before	.045554	5	0.1051	1.207525
* 1	16	selected lambda	.0415071	6	0.1058	1.206537
1	17	lambda after	.0378198	8	0.1057	1.206694
2	21	last lambda	.0260677	12	0.1010	1.213044

* lambda selected by cross-validation.

Post-estimation commands: estimates store

. estimates store depression_cluster

To store the results in memory

To display penalized coefficients of selected unstandardized variables, sorted by penalized coefficients of unstandardized variables after fitting lasso model

. lassocoef depression_cluster, display(coef, penalized) sort(coef, penalized)

	depression_cluster
_cons	.1771601
hopelessness	.1124357
HIV_stigma	.0418476
<pre>social_support</pre>	0385868
child_poverty	0383331
<pre>family_cohesion</pre>	0052862
adherence_self_efficacy	0000434

Legend:

b - base level

e - empty cell

o - omitted

Post-estimation commands: predict

. predict double depression_clusterPR3, pr
(option penalized assumed; Pr(depression) with penalized coefficients)

- predict: creates a new variable containing probabilities (logit model)
- double: type of variable
- depression_clusterPR3: name of new variable (predicted probability of the outcome)
- pr: probability of a positive outcome

7 Steps in prediction modelling

(Steyerberg & Vergouwe, 2014)

	• Define the prediction problem: define predictors and outcome of interest
2	Code predictors
3	• Specify a model
4	Estimate model parameters
5	• Model evaluation
6	• Model validation
	• Presentation of the model

 $\overrightarrow{\mathbf{x}}$

Model evaluation: calibration

• Calibration: agreement between observed rates of depression and predicted probabilities

Model evaluation: calibration

• Calibration belt: generates the calibration plot along with associated statistical test

Model evaluation: discrimination

- Discrimination: how well the model can differentiate ALWHIV with depression from those without
- Measured using Area under the receiver operator characteristic curve (AUC)/ C-statistic
- Prediction modelling: how well model will perform in new cases (generalizability)
- 10-fold cross-validation helps generate a more realistic estimate of predictive performance in new cases

AUC generated using 10-fold crossvalidation (internal validation)

Model:logistic

Seed:1972

Cross-validated (cv) mean AUC, SD	and Bootstrap Bias Corrected 95%CI
cvMean AUC:	0.7103
Bootstrap bias corrected 95%CI:	0.6574, 0.7500
cvSD AUC:	0.0711

Mean cross-validated Sen, Spe and false(+) at depression predicted values

. cvauroc depression depression_clusterPR3, kfold(10) seed(1972) fit detail graphlowess

☆ ☆

Rule of thumb-AUC of 0.5= same as chance; >0.7= good model; >0.8= strong model; 1= perfect model

 $\overrightarrow{}$

Rocreg estimates AUC using bootstrap resampling

rocreg

Bootstrap results

Number of obs = 563 Replications = 1,000

Nonparametric ROC estimation

Control standardization: empirical ROC method : empirical

Area under the ROC curve

^e Binary outcome

Status : depression Predicted probability of outcome Classifier: depression_clusterPR3 Predicted probability of outcome (Replications based on 39 clusters in clinic_id)

AUC	Observed coefficient	Bias	Bootstrap std. err.	[95% con ⁻	F. interval]	
	.7140593	.0012518	.0239153	.6671862	.7609324	(N)	normal-approximation CI
				.666503	.7616271	(P) (PC)	percentile CI
				.0043847	.7001555	(BC)	bias-corrected CI

Rocreg estimates AUC using bootstrap resampling

AUC curve estimated using rocreg

rocregplot

BROWN SCHOOL

Brathwaite R et al. Journal of the International AIDS Society 2021, 24:e25756 http://onlindibrarywiley.com/doi/10.1002/jia2.25756/full | https://doi.org/10.1002/jia2.25756

RESEARCH ARTICLE

Predicting the individualized risk of poor adherence to ART medication among adolescents living with HIV in Uganda: the Suubi+Adherence study

Rachel Brathwaite^{1,5} (D), Fred M Ssewamala¹, Torsten B Neilands², Moses Okumu³ (D), Massy Mutumba⁴, Christopher Damulira^{1,5}, Proscovia Nabunya¹, Samuel Kizito⁶, Ozge Sensoy Bahar¹, Claude A Mellins⁷ and Mary M McKay⁸

Thank you and questions

- Suubi+Adherence study was funded by the Eunice Kennedy Shriver National Institutes of Child Health and Human Development (NICHD) (Grant #1R01HD074949-01, PI: Fred M. Ssewamala).
- Dr. Fred Ssewamala (mentor)
- Dr. Tor Neilands (statistical guidance)
- ICHAD Uganda for data collection