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Overview 
 
Sample size ratios (SSR) provide convenient short-cuts  

for sample size calculations 
 
Assumptions 

 

. 2- and 3-level clustered sampling designs 
 

. Limited coverage of 3-level designs in this talk 
 

. Compound symmetric correlation structure of both x and y 
 
 
Regression modeling contexts 
 

 . GLMM 
 

 . GEE 
 

 . Survey Sampling (SS) 
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Sample Size Ratios (SSR): Introduction 
 
AKA design effect, misspecification effect, variance inflation/deflation factor.  

I chose the SSR label because it is broadly applicable  
 
Assume a simple random sample (SRS) of size N drawn from  

a population with population mean � and variance ��  
 
We choose the usual estimator �̂ of the sample mean of x 

�̂ = 1
� � 	


�


�
 

 
The variance of the estimator �̂ is  
 ���� = �� �⁄       
 

 
The precision of the estimator is the inverse of the above quantity,  

i.e., 1 ����⁄ = � ��⁄ ,   i.e., larger N obtains higher precision.  
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Sample Size Ratios (SSR): Introduction 
 

Say we have an alternative estimator �̂� with variance equal to 
 ����

� = �� ��⁄ ,    and rearranging 
 �� = �� ����

�� ,    
 

   i.e., �� equals population variance (��) × estimator precision (1 ����
�⁄ ) 

 

 

Similarly, for estimator �̂ 
 

 � = �� �����  
 

 

SSR represents relative (effective) sample size and relative precision, i.e., 
 

SSR = �
�� =

��
����
��

�����
= �����

����      
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Sample Size Ratios (SSR): Introduction 
 

SSR = �
�� = �����

����      

 

Assume N=1000, estimator �̂� has ����
� =2, and estimator �̂ has ����=1 

. SSR, as defined above, equals 2÷1=2 

. I.e., �̂� has larger variance and lower precision than �̂ 
 
Knowing N and SSR, we can calculate the effective sample size, Neff,  

    for an application of �̂� 
 

For N=1000 and SSR=2, when applying �̂�, Neff=N÷SSR=  500. 
 . I.e., when applying �̂� with N=1000, the Neff=500 

. Or, wrt precision, �̂� with N=1000 is equivalent to �̂  with N=500 
 
At the same time, SSR=2 indicates the expectations that  

. the variance of �̂� (i.e., ����
� ) will equal 2× the variance of �̂ (i.e., ����) 

. the std err of �̂� (i.e., ����
 ) will equal √2 times the std err of �̂ (i.e., ��� ) 
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Ex #1a: Planning for a Cluster-Randomized Trial (CRT) 
 
Context 
. Clustered sampling: :Level1 participants nested w/in Level2 clusters 
 

. Level2 clusters are randomized w/ 1:1 allocation to experimental groups 
 

. N=1000: n2=100 clusters, each of size n1=10  
 

. � ~� 0,1#,  	~$ 0.50#, where x is the experimental group indicator 
 

. Linear regression model 
 

. Intra-cluster correlation (ICC) of y ('() equals 0.05 

. 80% power with two-tailed α = .05 
 

Goal 
. Solve for minimum detectable effect size, bx 
 

In this context, the familiar Design Effect (Deff) is a useful SSR.  
 

. SSR = Deff = 1 + -'( ,     where - = 1 − 1 ,    
 
Deff was described by Kish 
 

     Kish (1965). Survey Sampling. New York: John Wiley & Sons, Inc  
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Ex #1a: Planning for a Cluster-Randomized Trial (CRT) 
 
Application of SSR (Deff) to solve for bx 
 

Step 1. Calculate SSR & Neff given r =9, '(=.05, and N=1000 
 

. SSR = Deff = 1 + -'( = 1 +  10 − 1# × .05 = 1.45 

 
. �566 = � SSR⁄ = 1000 1.45⁄ = 689.7 
 
. Note. �566 < � 

 

Step 2. Calculate minimum detectable effect specifying N=689.7 
 
 Result:  bx = .21244  (from PASS Linear Regression routine, �(�=1) 

 
 

In this case, a GLMM/GEE/SS model fit to N=1000 clustered observations  
obtains the same power as plain linear regression model  

fit to � ≅ 690 independent observations (SRS)  
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Ex #1b: Planning for a Cluster-Randomized Trial (CRT) 
 
If we instead began w/ values of bx and n1, we could solve for n2 and N 
. bx   = 0.21244 
 

. n1 =    10 
 

Step 1. Calculate N assuming bx=.21244 & independent obs. ('(=0) 
 

. from PASS Linear Regression routine, N = 690, if '(=0 
    (PASS only returns integer N values) 
 

. In this case, N from PASS is our target effective sample size, Neff  
 

 

Step 2. Calculate N assuming '(=.05 and nL1=10 
 

. SSR = 1 + -'( = 1 + 9 × .05 = 1.45 
 

. � = �566 × SSR = 690 × 1.45 = 1000.5 
 

. 1� = � 1 = 1000.5 10⁄ ≅ 100⁄  
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Ex #2: Planning for a RCT Randomizing Level1 Units 
 
Context 
. Clustered sampling: Level1 participants nested w/in Level2 clusters 
 

. Level1 units are randomized with 1:1 allocation to experimental groups 
 

. N=1000: n2=100 clusters, each of size n1=10  
 

. � ~� 0,1#,  	~$ 0.50#, where x is the experimental group indicator 
 

. Linear regression model 
 

. Intra-cluster correlation (ICC) of y ('() equals 0.05 

. 80% power with two-tailed α = .05 
 

Goal 
. Solve for minimum detectable effect size, bx 
 

In this context, a familiar sample size ratio is  
 

. SSR = 1 − '( 

 
This is the same SSR that applies to a paired t-test 
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Ex #2: Planning for a RCT Randomizing Level1 Units 
 
Application of the SSR: solve for bx 
 

 

Step 1. Calculate SSR and Effective Sample Size (Neff) 
 

. SSR = 1 − '( = 1 − .05 = 0.95 

 
. �566 = � SSR⁄ = 1000 0.95⁄ = 1052.6 
 
. Note. �566 > � 

 
 

Step 2. Calculate minimum detectable effect specifying N=1052.6 
 

 Result:  bx = .17222  (from PASS) 
 
 

Here, a GLMM/GEE/SS model fit to N=1000 clustered observations 
obtains the same precision as a plain model fit to  
N=1053 independent observations  
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Sample Size Ratios (SSR): 2-Level Sampling Designs 
 
So far, we've discussed two sample size ratios 
 SSR = Deff = 1 + -'( 

 
and  

 SSR = 1 − '( 

 
When does each apply? 
 
The choice depends on whether the x has  

 

. a between-cluster or  
 

. a within-cluster effect 
 

The intra-cluster correlation of x ('>) is important 
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Sample Size Ratios (SSR): 2-Level Sampling Designs 
 
We often think of ICC in terms of a variance component decomposition. 
 

' = �?5@A55B_DEFG@5H�
�?5@A55B_DEFG@5H� + �A/JB_DEFG@5H�  

 
 
However, that formulation has positive bias.  
 
When thinking about '>, it is helpful to consider the unbiased formula 
     (Harris 1913; Kish 1965; Wikipedia ICC page) 
 

'> =      �>.?5@A55B_DEFG@5H� − �>.A/JB_DEFG@5H� -⁄
�>.?5@A55B_DEFG@5H� + �>.A/JB_DEFG@5H�  

 

 
Harris JA (1913). On the calculation of intra-class and inter-class coefficients of correlation from class moments 
when the number of possible combinations is large. Biometrika, 9, 446–472. 
 

Kish, Leslie (1965). Survey Sampling. New York: John Wiley & Sons, Inc (p. 170)  
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Sample Size Ratios (SSR): 2-Level Sampling Designs 
 

    SSR = Deff = 1 + -'( 
 

In a regression context,  
this SSR applies when x has a fully between-cluster effect on y 

 

When will x have a fully between-cluster effect on y? 
 . When x is a Level2 variable; it will have  
          positive between-cluster & zero (0) within-cluster variance 
 

 . In this case, the intra-cluster correlation of x ('>) equals 1.0. 
 
Consider the unbiased formula for intra-cluster correlation as applied to x 
 

     '> =      �K.LMNOMMP_QRSTNMU�  V W X⁄
�K.LMNOMMP_QRSTNMU�  Y W = 1  

 
Use of this SSR (i.e.,. SSR = Deff = 1 + -'() assumes  

a fully between-cluster x effect, '> = 1 
 
Therefore, I label this SSR as SSRb  (i.e., sub-'b' for 'between')
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Summary Implications: SSRb 
 

. SSRb for a fully between-cluster effect, i.e., when '> = 1 
 

 SSR? = 1 + -'(,     
 

 
 
Basic results for SSRb  '( SSRb result Neff vs N 

'( = 0 SSR? = 1 �566 = � 1⁄       = � 

'( > 0 SSR? > 1 �566 = � SSR?⁄ < � 

 
. I.e., when '> = 1 and '( > 0,  

x has a between-cluster effect that will have lower precision  
versus within an alternative SRS design, all else being equal 

 
Note. '( < 0 is rare and not considered in this talk 
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Sample Size Ratios (SSR): 2-Level Sampling Designs 
 SSR = 1 − '( 
 

In a regression context… 
. This SSR applies when x has a fully within-cluster effect on y.  
. I.e., when x has exactly zero (0) between-cluster variation. 
. In this circumstance, '> takes its minimum value. 

 

       '> =      W V �O/ZP_QRSTNMU� X⁄
W Y �O/ZP_QRSTNMU� = V

   X  
 

When will x have a fully within-cluster effect? 
 . Often, a Level1 design variable w/ zero between-cluster variation, e.g., 

 

. RCT randomizing Level1 units w/ identical proportionate allocation 
           across clusters 
  

. x indicates scheduled assessment times (base, 6m, 12m) 
  

. x indicates intra-cluster role/position, e.g., doctor versus patient 
 

. Not always design vars. e.g., x holds deviations from cluster means 

 

I label this SSR (i.e., SSR = 1 − '() as SSRw     (i.e., sub-'w' for 'within') 
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Summary Implications: SSRw 
 

. SSRw for a fully within-cluster effect, i.e., when '> = −1 -⁄    
 

 SSRA = 1 − '(     
 

 

Basic results for SSRw  '( SSRw result Neff vs N 

'( = 0 SSRA = 1 �566 = 1[� × 1[ = � 

'( > 0 SSRA < 1 �566 = � SSRA⁄   > � 
 

. I.e., when '> = −1 -⁄  and '( > 0,  

x has a within-cluster effect that will have higher precision vs SRS 
 
SSRw applies whenever '> = −1 -⁄  
 '> = −1 -⁄  when between-cluster x variation equals zero (exactly). 

. Often, but not always, by design (e.g., assessment times) or  
    analysis (e.g., deviation scores)  
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Sample Size Ratios (SSR): 2-Level Sampling Designs 
 

So far, we've covered SSRs for  

. fully between-cluster effects, i.e., when �>.AJ@\JB�    = 0, '> = 1 and  

. fully within-cluster     effects, i.e., when �>.?5@A55B� = 0, '> = −1 -⁄  
 

However, '> values are not limited to −1 -⁄  and 1 
 

When −1 -⁄ < '> < 1, 
x can have both between- and within-cluster effects 

 

You might expect −1 -⁄ < '> < 1 when x is a(n)... 
. design var. w/ some between-cluster variance (often −1 -⁄ < '> < 0) 
. observed random, eg, participant-reported, variable (often 0 ≤ '> < 1) 

 

Which SSR should be used when −1 -⁄ < '> < 1? 
 

The answer depends upon the regression modeling framework, i.e.,  
 

 . Survey Sampling (SS) versus 
 

 . Generalized Linear Mixed Models (GLMM) or GEE  
 

Why is this the case?  
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Sample Size Ratios (SSR): 2-Level Sampling Designs 
 

First, a side note. The formulation…  
 

    '> =      �K.LMNOMMP_QRSTNMU� V�K.O/ZP_QRSTNMU� X⁄
�K.LMNOMMP_QRSTNMU� Y�K.O/ZP_QRSTNMU�   

 

    makes it clear that '> = 0 when �>.?5@A55B_DEFG@5H� = �>.A/JB_DEFG@5H� -⁄  
 

Thus, when '> = 0, positive between-cluster variation is expected 

 

Reminder… 
 

In this talk, when −1 -⁄ < '> < 1,  
I assume equivalent between- and within-cluster effects of x 

 

For reference, John Neuhaus describes modeling options  
    that decompose between- and within-cluster effects. 
 

Neuhaus, JM and Kalbfleisch, JD (1988).  Between- and within-cluster covariate effects  
    in the analysis of clustered data.  Biometrics, 54, 638-645.  
 

Neuhaus, JM (2001). Assessing change with longitudinal and clustered binary data. 
    Annual Review of Public Health, 22, 115-118.  
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Sample Size Ratios (SSR): 2-Level Sampling Designs 
 

SSRSS: SSR for the Survey Sampling regression modeling framework 
 

    SSR^^ = 1 + -'>'( 
 

    Essentially, SSRSS adds '> to the product term of SSRb 

 
 
SSRSS versus SSRb and SSRw '> Result 

1.0                                  SSR^^ = SSR?  = 1 + -'( 

−1 -⁄       1 − '( = SSRA = SSR^^ 

−1 -⁄ < '> < 1      1 − '( <                  SSR^^                  < 1 + -'( 

 
 
SSRSS was described by  
 

Scott, AJ and Holt, D (1982). The Effect of Two-Stage Sampling on Ordinary Least 
Squares Methods. Journal of the American Statistical Association, 77(380), 848- 854. 

 
(the SSRSS label is mine)  
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Sample Size Ratios (SSR): 2-Level Sampling Designs 
SSR^^ = 1 + -'>'(     vs     SSR? = 1 + -'(     vs     SSRA = 1 − '( 
 

Example SSRSS results assuming SS model, '( = 0.10, N=1000, r =10 

'> '( x effect type NeffSS= 
1000/SSRSS 

Neffb= 
1000/SSRb 

Neffw= 
1000/SSRw 

  1.00 0.10 btw-cluster   500   500 -- 

  0.10 0.10 btw- & w/in-   909 -- -- 

  0 0.10 btw- & w/in- 1000 -- -- 

 -0.05 0.10 btw- & w/in- 1053 -- -- 

-0.10† 0.10 w/in-cluster 1111 -- 1111 

  † '> = −1 -⁄ = −0.10.  ‘--’: Inappropriate applications of SSRb & SSRw 

 
When applying the SS modeling framework 
 . Do not use SSRb unless '> = 1 (or, trivially, '( = 0) 

   If '> < 1, then use of SSRb can underestimate Neff, power 
 

. Do not use SSRw unless '> = −1 -⁄  
   if −1 -⁄ < '>, then use of SSRw can overestimate Neff, power 
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Sample Size Ratios (SSR): 2-Level Sampling Designs 
 

SSRGE for the GEE and GLMM modeling frameworks 
 

   SSR_` = aYXbcdaVbcd
VbcYXbc VbK# = VbcYXbcaVbcd

VbcYXbc VbK# 
 

SSRGE is based upon the seminal (but underutilized) work of  
Basagaña, Liao, and Spiegelman (2011; BLS).  

 

BLS were focused on power of longitudinal studies estimating the effects  
of a time-varying binary x variable. 

 

BLS reported a SSR assuming compound symmetric (CS) '> and '(  

    versus assuming '> = 1 and CS '(.  See their Eq. 3.5. 
 

SSRGE manipulates BLS Eq. 3.5 to reflect comparison of  
     . a clustered sampling design with CS '> and '( versus 

           N independently sampled units (SRS).  
 

     . See Appendix A 
 
Basagaña, X., Liao, X., and Spiegelman. D. (2011). Power and sample size calculations for longitudinal studies estimating a main effect of a time-
varying exposure.  Statistical Methods in Medical Research, 29, 181-192.  
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Sample Size Ratios (SSR): 2-Level Sampling Designs 
 

SSRGE for the GEE and GLMM modeling frameworks 
 

   SSR_` = VbcYXbcaVbcd
VbcYXbc VbK#  

 
SSRGE versus SSRb,  SSRw, and SSRSS '> Result 

1.0                              SSR_` = SSR^^ = SSR? = 1 + -'( 

−1 -⁄   1 − '( = SSRA = SSR_` = SSR^^ 

−1 -⁄ < '> < 1  1 − '( <                  SSR_` < SSR^^                < 1 + -'( 

 
 
Notes.  
 

     . SSRGE ≤ SSRSS  
 
     . When −1 -⁄ < '> < 1, NeffGE > NeffSS, i.e.,  
 

  superior power via the GEE/GLMM vs SS modeling framework 
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Sample Size Ratios (SSR): 2-Level Sampling Designs 

SSR_` = VbcYXbcaVbcd
VbcYXbc VbK#           vs           SSR^^ = 1 + -'>'( 

 

Results: NeffGE versus NeffSS: N=1000, '( = 0.10,  r =10 

'> '( x effect type NeffGE= 
1000/SSRGE 

NeffSS= 
1000/SSRSS 

�eff_`�eff^^  

  1.00 0.10 btw-cluster   500   500 = 
  0.10 0.10 btw- & w/in-   1000   909 +10% ‡ 

  0 0.10 btw- & w/in-   1056 1000   +6% ‡ 
-0.05 0.10 btw- & w/in-   1083 1053   +3% ‡ 

 -0.10† 0.10 w/in-cluster 1111 1111 = 
 

  note. † '> = −1 -⁄ = −0.10.  ‡ GEE/GLMM has a power advantage over SS 

 
The tabled results are not dramatic, but the GEE/GLMM advantage  

can be stark for some combinations of '>, '(, and - 

 
When you have a choice, GEE/GLMM can be more efficient than SS 
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Sample Size Ratios (SSR): 2-Level Sampling Designs 

SSR_` = VbcYXbcaVbcd
VbcYXbc VbK#           vs           SSR^^ = 1 + -'>'( 

 
Results: NeffGE vs NeffSS: N=1000, '(=.50, r =1 (e.g., repeated measures) 

'> '( x effect type NeffGE= 
1000/SSRGE 

NeffSS= 
1000/SSRSS 

�eff_`�eff^^  

 1.00 0.50 btw-cluster   667   667 = 
 0.10 0.50 btw- & w/in-   1267   952 +33% ‡ 

  0 0.50 btw- & w/in-   1333 1000 +33% ‡ 
-0.50 0.50 btw- & w/in-   1667 1333 +25% ‡ 
-1.00† 0.50 w/in-cluster 2000 2000 = 

 

  note. † '> = −1 -⁄ = −1.0.  ‡ GEE/GLMM has a power advantage over SS 

 
The following slide compares SSRGE and SSRSS values  

for a range of '> and '( values and r =1 
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Expected NeffGE (bold) & NeffSS (regular): r =1 & N=1000 
 ρy 

0 0.3 0.6 0.9 
 −1 -⁄  1000 

1000 
1429 

1429 
2500 

2500 
10,000 

10,000 
 
 
 

ρx 

   0 1000 

1000 
1099 

1000 
1563 

1000 
  5263 

   1000 

0.3 1000 

1000 
1000 

  917 
1281 

  847 
3842 

   787 
0.6 1000 

1000 

  901 

  847 
1000 

   735 
2421 

   649 
0.9 1000 

1000 

  802 

   787 
  718 

   649 
1000 

   552 
1.0 1000 

1000 

   769 

   769 

   625 

   625 

   526 

   526 

. If ρy = 0 (green), '> = −1 -⁄  (purple), or ρx = 1 (pink), then NeffGE=NeffSS. 
    Otherwise, NeffGE > NeffSS 
 

. If '> = '(, then NeffGE =N (yellow)  
 

. If '> < '(, then NeffGE >N (purple & blue) 
 

. If '> > '(, then NeffGE <N (orange & pink)  
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SSR inputs: linear versus logistic models 
 
When planning for a logistic regression analysis there are some wrinkles  
 
Population average (GEE, SS) versus unit-specific (GLMM)…  

. estimates of x effects (bx) as well as  
model-predicted vs observed outcome probabilities, and 

. estimates of '> and '( 

 
Power analyses described in this talk require population average inputs 
 
If inputting an effect estimate into power analysis for logistic regression,  

choose a population average estimate  
(e.g., based upon observed means or a GEE, ALR, or SS analysis) 

 
Obtain '> & '( estimates from a GEE logistic model,  

not a mixed logistic model 
 

 . GEE ICCs reflect intra-cluster homogeneity of observed values 
 

. In contrast, mixed logistic model ICCs reflect underlying latent values 
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Sample Size Ratios (SSR): 2-Level Sampling Designs 
 

Simulation comparing calculated versus simulated SSRs 
 

Simulate 2-level data for c= 1 to 63 combinations of '> and '( values  

 . '> ranging from −1 -⁄  to 1.0 
 . '( ranging from       0 to 0.9 

 

Generate i= 1 to 10K replicate samples from each of 63 combinations 
 

Fit regression model to each replicate sample assuming independent obs. 
 Save standard error estimates for fixed effect of x, �eJBf.D
  
 

Fit regression model to each replicate sample assuming clustered obs. 
 Save standard error estimates for fixed effect of x, �eDEFG.D
  
 

A simulated SSR for combination c averages 
  �eDEFG.D
 �eJBf.D
 ⁄ #� values across i=1 to 10K replicate samples 

 

Compare simulated SSR to SSRGE or SSRSS, as appropriate   
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Simulated (bold) and Expected (plain) Values of SSRGE assuming small clusters (r=1) and 63 Combinations of ρx 

and ρy: GEE Linear Regression Modeling Framework with exchangeable working correlation structure.  

 ρy 

ρx 0 .05 .10 .25 .50 .75 .90 

-1.0  −1 -⁄ # 
1.000 

1.000 
0.950 

0.950 
0.900 

0.900 
0.749 

0.750 
0.499 

0.500 
0.249 

0.250 
0.099 

0.100 
 

 0 
0.998 

1.000 
0.996 

0.998 
0.988 

0.990 
0.936 

0.938 
0.749 

0.750 
0.437 

0.438 
0.188 

0.190 
 

  .05 
0.998 

1.000 
0.998 

1.000 
0.993 

0.995 
0.948 

0.949 
0.769 

0.769 
0.454 

0.455 
0.196 

0.199 
 

  .10 
0.998 

1.000 
1.000 

1.003 
0.998 

1.000 
0.960 

0.962 
0.789 

0.789 
0.471 

0.473 
0.206 

0.209 
 

  .25 
0.998 

1.000 
1.008 

1.010 
1.013 

1.015 
0.998 

1.000 
0.855 

0.857 
0.537 

0.538 
0.243 

0.245 
 

  .50 
0.998 

1.000 
1.021 

1.023 
1.040 

1.042 
1.069 

1.071 
0.998 

1.000 
0.699 

0.700 
0.341 

0.345 
 

  .75 
0.997 

1.000 
1.034 

1.036 
1.068 

1.070 
1.152 

1.154 
1.198 

1.200 
0.996 

1.000 
0.578 

0.585 
 

  .90 
0.997 

1.000 
1.043 

1.045 
1.086 

1.088 
1.207 

1.210 
1.362 

1.364 
1.343 

1.346 
0.991 

1.000 
 

1.00 
0.997 

1.000 
1.048 

1.050 
1.098 

1.110 
1.249 

1.250 
1.499 

1.500 
1.750 

1.750 
1.901 

1.900 
Note. Simulated data for each combination of ρx and ρy included m=500 clusters, n=2 units per cluster, N=1000, and 10K replicate samples.  Simulated SSRGE estimated from comparison of std errs 

estimated from GEE model versus cluster-naïve model. Cell shading codes for combinations of ρx and ρy values: Grey: E[SSRGE]=1.0.  Green: E[SSRGE]<1.0;  Orange: E[SSRGE]>1.0 
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Simulated (bold) and Expected (plain) Values of SSRGE assuming small clusters (r=1) and 63 Combinations of ρx 

and ρy: GLMM Linear Regression Modeling Framework with exchangeable working correlation structure.  

 ρy 

ρx 0 .05 .10 .25 .50 .75 .90 

-1.0  −1 -⁄ # 
 1.000 

1.000 
0.947 

0.950 
0.900 

0.900 
0.750 

0.750 
0.500 

0.500 
0.251 

0.250 
0.100 

0.100 
 

 0 
 0.998 

1.000 
0.996 

0.998 
0.988 

0.990 
0.936 

0.938 
0.750 

0.750 
0.439 

0.438 
0.191 

0.190 
 

  .05 
 0.998 

1.000 
0.998 

1.000 
0.993 

0.995 
0.948 

0.949 
0.769 

0.769 
0.456 

0.455 
0.200 

0.199 
 

  .10 
 0.998 

1.000 
1.001 

1.003 
0.998 

1.000 
0.960 

0.962 
0.790 

0.789 
0.473 

0.473 
0.210 

0.209 
 

  .25 
 0.998 

1.000 
1.009 

1.010 
1.013 

1.015 
0.998 

1.000 
0.856 

0.857 
0.539 

0.538 
0.247 

0.245 
 

  .50 
 0.999 

1.000 
1.023 

1.023 
1.040 

1.042 
1.069 

1.071 
0.999 

1.000 
0.701 

0.700 
0.346 

0.345 
 

  .75 
 0.999 

1.000 
1.037 

1.036 
1.069 

1.070 
1.153 

1.154 
1.199 

1.200 
0.998 

1.000 
0.586 

0.585 
 

  .90 
 0.999 

1.000 
1.047 

1.045 
1.088 

1.088 
1.209 

1.210 
1.363 

1.364 
1.345 

1.346 
1.000 

1.000 
 

1.00 
 0.999 

1.000 
1.053 

1.050 
1.100 

1.100 
1.251 

1.250 
1.501 

1.500 
1.752 

1.750 
1.903 

1.900 
Note. Simulated data for each combination of ρx and ρy included m=500 clusters, n=2 units per cluster, N=1000, and 10K replicate samples.  Simulated SSRGE estimated from comparison of std errs 

estimated from GLMM linear model versus cluster-naïve model. Cell shading codes for combinations of ρx and ρy values: Grey: E[SSRGE]=1.0.  Green: E[SSRGE]<1.0;  Orange: E[SSRGE]>1.0 
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Simulated (bold) and Expected (plain) Values of SSRSS assuming small clusters (r=1) and 63 Combinations of ρx 

and ρy: Survey Sampling Linear Regression Modeling Framework.  

 ρy 

ρx 0 .05 .10 .25 .50 .75 .90 

-1.0  −1 -⁄ # 
1.001 

1.000 
0.951 

0.950 
0.901 

0.900 
0.750 

0.750 
0.501 

0.500 
0.251 

0.250 
0.100 

0.100 
 

 0 
1.000 

1.000 
0.999 

1.000 
1.001 

1.000 
0.999 

1.000 
0.999 

1.000 
1.001 

1.000 
1.000 

1.000 
 

  .05 
0.999 

1.000 
1.003 

1.003 
1.004 

1.005 
1.012 

1.013 
1.025 

1.025 
1.037 

1.038 
1.043 

1.045 
 

  .10 
1.001 

1.000 
1.004 

1.005 
1.010 

1.010 
1.025 

1.025 
1.050 

1.050 
1.073 

1.075 
1.088 

1.090 
 

  .25 
0.999 

1.000 
1.012 

1.013 
1.024 

1.025 
1.062 

1.063 
1.123 

1.125 
1.185 

1.188 
1.223 

1.225 
 

  .50 
0.999 

1.000 
1.023 

1.025 
1.049 

1.050 
1.123 

1.125 
1.248 

1.250 
1.372 

1.375 
1.447 

1.450 
 

  .75 
0.997 

1.000 
1.035 

1.038 
1.073 

1.075 
1.186 

1.188 
1.372 

1.375 
1.560 

1.563 
1.673 

1.675 
 

  .90 
0.996 

1.000 
1.043 

1.045 
1.088 

1.090 
1.222 

1.225 
1.447 

1.450 
1.672 

1.675 
1.809 

1.810 
 

1.00 
0.997 

1.000 
1.047 

1.050 
1.096 

1.100 
1.246 

1.250 
1.496 

1.500 
1.748 

1.750 
1.900 

1.900 
Note. Simulated data for each combination of ρx and ρy included m=500 clusters, n=2 units per cluster, N=1000, and 10K replicate samples.  Simulated SSRSS estimated from comparison of std errs 

estimated from SS linear model versus cluster-naïve model. Cell shading codes for combinations of ρx and ρy values: Grey: E[SSRGE]=1.0.  Green: E[SSRGE]<1.0;  Orange: E[SSRGE]>1.0 
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Simulated (bold) and Expected (plain) Values of SSRGE assuming large clusters (r =50) and 63 Combinations  

of ρx and ρy: GEE Linear Regression Modeling Framework with exchangeable working correlation structure.  

 ρy 

ρx 0 .05 .10 .25 .50 .75 .90 

-.02  −1 -⁄ # 
1.000 

1.000 
0.951 

0.950 
0.902 

0.900 
0.754 

0.750 
0.507 

0.500 
0.257 

0.250 
0.104 

0.100 
 

 0 
0.999 

1.000 
0.964 

0.964 
0.917 

0.915 
0.768 

0.764 
0.517 

0.510 
0.262 

0.255 
0.106 

0.102 
 

  .05 
0.998 

1.000 
0.999 

1.000 
0.956 

0.956 
0.806 

0.802 
0.544 

0.536 
0.275 

0.268 
0.112 

0.107 
 

  .10 
0.995 

1.000 
1.038 

1.039 
1.000 

1.000 
0.847 

0.844 
0.572 

0.565 
0.291 

0.283 
0.118 

0.113 
 

  .25 
0.990 

1.000 
1.171 

1.177 
1.158 

1.161 
1.001 

1.000 
0.684 

0.675 
0.348 

0.339 
0.141 

0.136 
 

  .50 
0.984 

1.000 
1.491 

4.511 
1.573 

1.588 
1.444 

1.446 
1.010 

1.000 
0.519 

0.507 
0.212 

0.204 
 

  .75 
0.978 

1.000 
2.065 

2.111 
2.464 

2.512 
2.590 

2.613 
1.936 

1.926 
1.025 

1.000 
0.421 

0.405 
 

  .90 
0.976 

1.000 
2.693 

2.771 
3.754 

3.857 
4.965 

5.063 
4.330 

4.333 
2.457 

2.406 
1.038 

1.000 
 

1.00 
0.974 

1.000 
3.411 

3.500 
5.884 

6.000 
13.146 

13.500 
25.451 

26.000 
38.051 

38.500 
45.734 

46.000 
Note. Simulated data for each combination of ρx and ρy included m=75 clusters, n=51 units per cluster, N=3825, and 10K replicate samples.  Simulated SSRGE estimated from comparison of std errs 

estimated from GEE linear model versus cluster-naïve model.  Cell shading codes for combinations of ρx and ρy values: Grey: E[SSRGE]=1.0.  Green: E[SSRGE]<1.0;  Orange: E[SSRGE]>1.0 
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Simulation Results: Multivariate Logistic Models. Expected vs Simulated Sample Size Ratios and Statistical Power 

across the SS & GEE Modeling Frameworks: r =2, m=500, ρy=0.349 (population average), & 50K replicate samples. 
 
x variables 

a 
Survey Sampling Modeling Framework b GEE Modeling Framework c  �eff_`�eff^^  

SSRSS NeffSS 
 

expected 
f 

Power SSRGE NeffGE 
 

expected 

f 

Power 

 '> expected 
d 

simulated 
e 

expected 
g 

simulated 
h 

expected 
d 

simulated 
e 

expected 
g 

simulated 
h 

x1 -1.00 0.651 0.653 1535 .715 .701 0.651 .647 1535 .715 .709 1.00 
x2 0 1.000 1.000 1000 .532 .511 0.878 .872 1138 .586 .572 1.14 
x3 0.25 1.087 1.086 920 .499 .477 0.962 .956 1039 .547 .530 1.13 
x4 0.50 1.174 1.173 852 .469 .453 1.064 1.059 934 .505 .496 1.10 
x5 0.75 1.261 1.259 793 .443 .427 1.189 1.187 841 .464 .452 1.06 
x6 1.00 1.349 1.346 742 .420 .400 1.349 1.351 742 .420 .403 1.00 

a x1-x6 jointly uncorrelated & each unit-standardized; column 'ρx' reports the population intra-cluster correlation value of each x variable. 
 
b Survey sampling modeling framework: fixed effect parameters estimated assuming independent observations and standard errors 
estimated via the Taylor series method (�eg�hEiH) assuming a compound-symmetric covariance structure. 

 
c GEE Modeling framework: fixed effect parameters and model-based standard errors (�ejif) estimated by a GEE linear model with 
compound symmetric working correlation structure. 

 
d SSRSS = 1 + -'>'( and SSRGE = k1 − '( + -'(a1 − '(dl k1 − '( + -'( 1 − '>#l� , where r=1, ρx values as tabled, and ρy=0.349. 

 
e the quantity a�eg�hm �eJBfm⁄ d�

 or a�ejifm �eJBfm⁄ d�
, as appropriate, averaged over i=1 to 50K replicate samples, where �eJBfm denotes the 

corresponding standard error estimate assuming independent observations. 
 
f NeffSS=N÷SSRSS and NeffGE=N÷SSRGE, where N=1000.  
 
g Statistical power calculated by PASS assuming NeffSS or NeffGE, as appropriate, two-tailed α=.05, fixed effect of x equal bpa≈0.130 

(population average), P[y=1|x=0]≈0.533 (population average), P[y=1|any x=1]≈0.565 (population average), and σx=1.0. 
 

h Simulated statistical power represents the proportion of corresponding replicate-sample fixed effect parameter estimates with test p-
value <.05.   
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3-Level Clustered Sampling Design: Simple Example 
 

Example: Multisite RCT w/ sites (s), people (p), measures (m) 
 

Levels and Sample sizes 
. Sites          (s) @ Level3: n3 = 30 sites 
 

. People      (p) @ Level2: n2 = 10 people per site. Units of randomization 
 

. Measures (m) @ Level1: n1 =  2 assessment times per person 
 
x variables 
x3 is a site-level (L3) continuous covariate 
 . x3 has positive between site variation and zero within site variation 
 . '>n = 1.0.                                           The intra-site correlation of x3 
 

x2 is the person-level (L2) binary experimental group indicator 
 . Assume x2 has zero between-site variation  
 . '>� = −1  10 − 1# = −. 111ooooo⁄ .             The intra-site correlation of x2 
 

x1 is the binary assessment time indicator at L1 
 . x1 has zero between-person variation 
 . '> = −1  2 − 1# = −1⁄ .                  The intra-person correlation of x1 
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3-Level Clustered Sampling Design: Simple Example 
 

Example: Multisite RCT w/ sites (s), people (p), measures (m) 
 
Common types of '( estimates reported from a 3-level model 
 

'(.G      = �c.T�
�c.T� Y�c.p� Y�c.q�    Proportion of y var. attributable to sites 

 

'(.G&s = �c.T� Y�c.p�
�c.T� Y�c.p� Y�c.q�    Prop. of y var attributable to sites & pts 

 

'(.s    = �c.p�
�c.T� Y�c.p� Y�c.q�    Prop.  of y var. attributable to patients 

 
 

Both '(.G&s and '(.G may be described as 'ICC at Level2' 
 

. When reading the literature, be clear whether '(.G&s or '(.G is reported 
 

. When reporting, be clear whether you are reporting '(.G&s or '(.G  
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3-Level Clustered Sampling Design: Simple Example 
 
Example: Multisite RCT w/ sites (s), people (p), measures (m) 
 
1. SSR for x3. A site variable w/ '>n=1 has a fully a between-site effect 
 
My initial, incorrect conjecture 
 SSR>n = SSR? G# = 1 +  10 × 2 − 1#'(.G 

 
Correction 
 SSR>n = SSR? G# = 1 +  10 × 2 − 1#'(.G②,   
 

where '(.G② is the intra-site correlation of y estimated from a  

2-level model that excludes Level2 cluster indicators (persons).  
I.e., only top-level (site) clusters are modeled, i.e.,  

 

'(.G② = �c.T②�
�c.T②� Y�c.q②�     Proportion of y var. attrib. to sites: from 2-level model 
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3-Level Clustered Sampling Design: Simple Example 
 

Example: Multisite RCT w/ sites (s), people (p), measures (m) 
 

1. SSR for x3, which has a fully a between-site effect 
 

. Given a 3-level data structure, when a model ignores the 2nd level,  
    the Level2 variation is distributed to both Level3 & Level1 (Moerbeek). 
 

From a 3-level model: obtain prop. of variance explained at Levels 2 & 3 
 '(.G = .05                        Proportion of y variance attributable to sites 
 '(.s = .10                        Proportion of y variance attributable to people 
 '(.s = .85                        Proportion of y variance attributable to measures 
 

 

Given '(.G = .05, '(.s = .10, n2=10, and n1=2, estimate '(.G②… 
 '(.G② = '(.G + '(.s 11 − 1#  12 × 11 − 1#⁄ = .05 + . 10 19⁄ = .055263 

 
    SSR>n = 1 +  10 × 2 − 1# × 055263 = 2.05 
 
Moerbeek, M (2004). The Consequence of Ignoring a Level of Nesting in Multilevel Analysis. Multivariate Behavioral Research, 39. 129-149. 
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3-Level Clustered Sampling Design: Simple Example 
 

Example: Multisite RCT w/ sites (s), people (p), measures (m) 
 

2. SSR for x2. A Level 2 variable w/ '>� = −1 -⁄  
has a fully within-site/fully between-people effect 

 

My initial, incorrect conjecture SSR>� = SSRA G# × SSR? s# = a1 − '(.Gd × k1 +  2 − 1#'(.sl 
 

Correction 

SSR>� = SSRA G# × SSR? s# = a1 − '(.Gd × v1 + w 2 − 1
1 − '(.Gx '(.sy 

                                                       = a1 − '(.Gd × z1 +  2 − 1#{'(.sG , 
 

where '(.sG is estimated via var. components from a 3-level model, i.e., 
 

'(.sG = �c.p�
�c.p� Y�c.q�    Prop. y var. attrib. to people, removing site variation 

 

Given '(.G = .05, '(.s = .10, '(.| = .85, & n1=2.  

          '(.sG = . 10  . 10 + .85# = .10526⁄  
 

    SSR>� =  1 − .05# × z1 +  2 − 1#{. 10526 = 1.05  
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3-Level Clustered Sampling Design: Simple Example 
 
Example: Multisite RCT w/ sites (s), people (p), measures (m) 
 
3. SSR for x1, which has a fully within-site/fully within-people effect 
 
My initial, incorrect conjecture SSR> = SSRA G# × SSRA s# = a1 − '(.Gda1 − '(.sd 

 
Correction SSR> = SSRA G# × SSRA s# = a1 − '(.Gda1 − '(.sGd,  

 
  where '(.sG is estimated as described above 

 

Given '(.G = .05 and '(.sG = .10526 
 

    SSR> =  1 − .05# 1 − .10526# = 0.85 
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3-Level Clustered Sampling Design: Simple Example 
Simulated data from 3-Level Linear Mixed Model w/ 2K replicate samples  
  . n3=30 sites (L3), n2=10 subjects/site (L2), n1=2 assessments/subject 
  . x3: a normal random variate at Level3  
  . x2: a binary randomized group indicator at Level2 
    x1: a binary assessment time indicator at Level1 
 

x(level) 
 '> 

x effect @   '( 
'( adjustment SSRGE 

L3 L2 '(.G② '(.sG expected simulated 

x3  1.0 btw -- 0.05 .05526 -- 2.05 2.056 
x2  −1 -⁄  w/in btw 0.10 -- .10526 1.05 1.053 

x1 −1 -⁄  w/in w/in 0.85 -- -- 0.85 0.854 
 

SSR expected value calculations SSR_`.>n = SSR? G#                                      = 1 +  10 × 2 − 1# × 0.05526 = 2.05 
 SSR_`.>� = SSRA G# ∙ SSR? s# =  1 − 0.05# × z1 +  2 − 1# × 0.10526{ = 1.50 
 SSR_`.> = SSRA G# × SSRA s#                 =  1 − 0.05# ×  1 − 0.10526# = 0.85 
 

SSR simulated values are relative size of std errs from LMM & 

Independence models, averaged over i=1 to 2K replicates: a�e[jjm �e~Bfm⁄ d�
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3-Level Clustered Sampling Design: Alternative Design A 
Simulated data from 3-Level Linear Mixed Model w/ 2K replicate samples  
  . n3=30 sites (L3), n2=10 subjects/site (L2), n1=2 assessments/subject 
  . x3: a normal random variate at Level3  
  . x2: a binary randomized group indicator at Level2 
    x1: a binary assessment time indicator at Level1 
 

x(level) 
 '> 

x effect @   '( 
'( adjustment SSRGE 

L3 L2 '(.G② '(.sG expected simulated 

x3  1.0 btw -- 0.2 .2368 -- 5.50 5.564 
x2  −1 -⁄  w/in btw 0.7 -- .875 1.50 1.523 

x1 −1 -⁄  w/in w/in 0.1 -- -- 0.10 0.102 
 

SSR expected value calculations SSR_`.>n = SSR? G#                                   = 1 +  10 × 2 − 1# × 0.2368 = 5.50 
 SSR_`.>� = SSRA G# ∙ SSR? s# =  1 − 0.20# × z1 +  2 − 1# × 0.875{ = 1.50 
 SSR_`.> = SSRA G# ∙ SSRA s#                   =  1 − 0.20# ×  1 − 0.875# = 0.10 
 

SSR simulated values are relative size of std errs from LMM & 

Independence models, averaged over i=1 to 2K replicates: a�e[jjm �e~Bfm⁄ d�
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3-Level Clustered Sampling Design: Alternative Design B 
Simulated data from 3-Level Linear Mixed Model w/ 2K replicate samples  
  . n3=30 sites (L3), n2=10 subjects/site (L2), n1=5 assessments/subject 
  . x3: a normal random variate at Level3  
  . x2: a binary randomized group indicator at Level2 
    x1: a uniform categorical assessment time indicator at Level1 
 

x(level) 
 '> 

x effect @   '( 
'( adjustment SSRGE 

L3 L2 '(.G② '(.sG expected simulated 

x3  1.0 btw -- 0.05 .0908 -- 5.45 5.479 
x2  −1 -⁄  w/in btw 0.50 -- .5263 2.95 2.964 

x1 −1 -⁄  w/in w/in 0.45 -- -- 0.45 0.455 
 

SSR expected value calculations SSR_`.>n = SSR? G#                                      = 1 +  10 × 5 − 1# × 0.0908 = 5.45 
 SSR_`.>� = SSRA G# ∙ SSR? s# =  1 − 0.05# × z1 +  5 − 1# × 0.5263{ = 2.95 
 SSR_`.> = SSRA G# ∙ SSRA s#                 =  1 − 0.05# ×  1 − 0.5263# = 0.450 
 

SSR simulated values are relative size of std errs from LMM & 

Independence models, averaged over i=1 to 2K replicates: a�e[jjm �e~Bfm⁄ d�
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Summary 
 

Proper use of SSRs requires consideration of '> 
 
SSRb zSSR? = 1 + -'({ is well known, but perhaps over-applied. 

Improper application of SSRb can lead to  
substantially under-estimated power, w/ cost and ethical implications 

 
When −1 -⁄ < �> < 1, choose GEE/GLMM over SS modeling framework 
 
All results reported here assumed  

compound symmetric correlation structure of x and y 
 
Power analysis for 3-level logistic models entails a few more wrinkles, 
 mostly regarding estimation of population average '( values 

 (a future talk) 
 
Some additional details and a quiz w/ answers included in the Appendix 
 

Thank you  
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2-Level Clustered Sampling Designs: '>: Quiz Yourself 
 

Pre-post design 
 Goal: test pre-post mean y difference in a one-arm longitudinal trial 
 Will the pre-post comparison have a between- or within-cluster effect? 
 What is the value of '>? 
 

Clustered sample of teachers and their current students 
 

 Goal: regress students' SAT (y) onto teacher's years of experience (x) 
 

 Will teacher experience have a between- or within-cluster effect? 
 

 What is the value of '>? 
 

Multisite RCT. Randomization of patients within each site 
 

. Is the intervention group effect a between- or within-cluster effect? 
 

. What can be said about the expected '>value? 
 

Observational study with geographic cluster sampling 
 

 Goal: regress smoking status (y) onto respondent income (x) 
 

 Is income expected to have between- and/or within-cluster effects? 
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Appendix A: Derivation of SSRGE from BLS (2011) Eq. 3.5. 
 

For applications of the GLMM or GEE modeling frameworks,  
BLS Eq. 3.5 relates effective sample sizes under assumptions of  
 

.  (i) CS correlation structures of x and y versus  
 

. (ii) CS correlation structure of y with '> = 1 
 

SSR�[^ = �566�K,�c
�566�K��,�c

= VbcYXbcVXbcbK
Vbc                                  [BLS Eq. 3.5] 

 
A SSR that relates observed N to Neff assuming CS correlation structures 

of x and y can be derived from BLS Eq. 3.5, as follows. 
 

SSR_` = �
�566�K,�c =

��M���K��,�c�M���K,�c�M���K��,�c
= ^^�L

^^���� =    
 

             = YXbc���c���c���c�K���c
 = aVbcdaYXbcd

VbcYXbcVXbcbK  

 

             = VbcYXbcaVbcd
VbcYXbc VbK#    
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Appendix B. SSRGE results for selected values of '> (2-level model) 

   SSR_` = aVbcdaYXbcd
VbczVX VbK#{ = VbcYXbcaVbcd

VbcYXbc VbK# 
 

if '> = −1 -⁄ , then  
 

SSR_` = aVbcdaYXbcd
VbcYXbc VbK# = ^^�O×^^�L

^^�L = SSRA  
 

if '> = 1, then  
 

SSR_` = aVbcdaYXbcd
VbcYXbc VbK# = ^^�O×^^�L

^^�O = SSR?  
 

if '> = 0, then  
 

SSR_` = aVbcdaYXbcd
VbcYXbc VbK# = ^^�O×^^�L

Y XV#bc ≅ 1 − '(  �� X⁄ #,    (where 1 = - + 1) 

 

I.e., as - → ∞, 
^^�L

Y XV#bc → 1, and SSR_` → SSRA 
 

Additionally, if r =1 then SSR_` = aVbcdaYbcd
 = 1 − '(� 
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2-Level Clustered Sampling Designs: '>: Quiz Answers 
 

Paired t-test 
 Goal: test pre-post mean y difference in a one-arm longitudinal trial 
Here, respondents define the clusters and repeated measures (pre and 
post) are nested within respondents. 
 Will the pre-post comparison have a between- or within-cluster effect? 
Pre-post indicator (x) is defined at Level1. Each cluster (person) has 2 
assessments: one pre (x=0) and one post (x=1). There is zero between-
cluster variation of x and positive within-cluster variation of x. Therefore, 
the pre-post comparison is a fully within-cluster (within-person) effect. 
 What is the value of '>? 
In this case '> = −1  2 − 1# = −1.0⁄  
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2-Level Clustered Sampling Designs: '>: Quiz Answers 
 

Clustered sample of teachers and their current students 
 

 Goal: regress students' SAT (y) onto teacher's years of experience (x) 
Teachers are clusters (Level2) and students (Level1) are nested within 
teachers 
 Will teacher experience have a between- or within-cluster effect? 
Teacher experience is a Level2 variable. Therefore, teacher experience 
will have a fully between-cluster (between-teacher) effect. 
 

 What is the value of '>? 
Teacher experience will have positive between-cluster variation and zero 
within-cluster variation. Therefore, '> = 1 
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2-Level Clustered Sampling Designs: '>: Quiz Answers 
 

Multisite RCT. Randomization of patients within each site 
Sites are clusters (Level2) and patients (Level1) are nested in sites 
 
. Is the intervention group effect a between- or within-cluster effect? 
Intervention group indicator is a Level1 variable. Therefore, if the 
proportionate representation of Trt vs Ctrl assignment is identical across 
clusters, then the group effect will be a fully within-cluster effect. If the 
proportionate representation of group assignment varies slightly across 
site clusters, then a small of amount of between-cluster x variation will 
exist and the group comparison will be mostly a within-cluster effect.  
 
. What can be said about the expected '>value? '> = −1 -⁄  if the proportionate allocation to Trt v Ctrl is identical across 
clusters. 
 
If proportionate treatment assignment varies across clusters, then  '> > −1 -⁄  .  Given sufficient cluster size and between-site variation, '> 
could become positive.   
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2-Level Clustered Sampling Designs: '>: Quiz Answers 
 

Observational study with geographic cluster sampling 
 

 Goal: regress smoking status (y) onto respondent income (x) 
Geographic areas are clusters (Level2) and respondents (Level1) are 
nested within clusters.  
 

 Is income expected to have between- and/or within-cluster effects? 
We expect that respondent income (x) will have both between- and 
within-cluster variation. Therefore, we expect 0 < '> < 1, which means 
that income (x) can have both between- and within-cluster effects on 
smoking status. 

 


