Simplified power analyses for clustered sampling designs with compound symmetric covariance structure of *x* & y: A survey of sample size ratios (SSR)

UCSF CAPS Methods Core

May 11th, 2021

Steve Gregorich

Overview

Sample size ratios (SSR) provide convenient short-cuts for sample size calculations

Assumptions

- . 2- and 3-level clustered sampling designs
- . Limited coverage of 3-level designs in this talk
- . Compound symmetric correlation structure of both x and y

Regression modeling contexts

- . GLMM
- . GEE
- . Survey Sampling (SS)

Sample Size Ratios (SSR): Introduction

AKA design effect, misspecification effect, variance inflation/deflation factor. I chose the SSR label because it is broadly applicable

Assume a simple random sample (SRS) of size *N* drawn from a population with population mean μ and variance σ^2

We choose the usual estimator $\hat{\mu}$ of the sample mean of x

$$\hat{u} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

The variance of the estimator $\hat{\mu}$ is

$$\sigma_{\widehat{\mu}}^2 = \sigma^2 / N$$

The *precision* of the estimator is the inverse of the above quantity, i.e., $1/\sigma_{\hat{\mu}}^2 = N/\sigma^2$, i.e., larger *N* obtains higher precision.

Sample Size Ratios (SSR): Introduction

Say we have an alternative estimator $\hat{\mu}_a$ with variance equal to $\sigma_{\hat{\mu}_a}^2 = \sigma^2 / N_a$, and rearranging $N_a = \sigma^2 / \sigma_{\hat{\mu}_a}^2$, i.e., N_a equals population variance (σ^2) × estimator precision ($1/\sigma_{\hat{\mu}_a}^2$)

Similarly, for estimator $\hat{\mu}$ $N = \sigma^2 / \sigma_{\hat{\mu}}^2$

SSR represents relative (effective) sample size and relative precision, i.e., $SSR = \frac{N}{N_a} = \frac{\frac{\sigma^2}{\sigma_{\hat{\mu}}^2}}{\frac{\sigma^2}{\sigma_{\hat{\mu}a}^2}} = \frac{\sigma_{\hat{\mu}a}^2}{\sigma_{\hat{\mu}a}^2}$

Sample Size Ratios (SSR): Introduction

$$SSR = \frac{N}{N_a} = \frac{\sigma_{\hat{\mu}a}^2}{\sigma_{\hat{\mu}}^2}$$

Assume *N*=1000, estimator $\hat{\mu}_a$ has $\sigma_{\hat{\mu}_a}^2$ =2, and estimator $\hat{\mu}$ has $\sigma_{\hat{\mu}}^2$ =1. . SSR, as defined above, equals 2÷1=2

- . I.e., $\hat{\mu}_a$ has larger variance and lower precision than $\hat{\mu}$
- Knowing *N* and SSR, we can calculate the effective sample size, *N*eff, for an application of $\hat{\mu}_a$

For *N*=1000 and SSR=2, when applying $\hat{\mu}_a$, *N*eff=*N*:SSR= 500.

- . I.e., when applying $\hat{\mu}_a$ with *N*=1000, the *N*eff=500
- . Or, wrt precision, $\hat{\mu}_a$ with N=1000 is equivalent to $\hat{\mu}$ with N=500

At the same time, SSR=2 indicates the expectations that

the variance of $\hat{\mu}_a$ (i.e., $\sigma_{\hat{\mu}_a}^2$) will equal 2× the variance of $\hat{\mu}$ (i.e., $\sigma_{\hat{\mu}_a}^2$)

. the std err of $\hat{\mu}_a$ (i.e., $\sigma_{\hat{\mu}_a}$) will equal $\sqrt{2}$ times the std err of $\hat{\mu}$ (i.e., $\sigma_{\hat{\mu}}$)

Ex #1a: Planning for a Cluster-Randomized Trial (CRT)

Context

- . Clustered sampling: :Level1 participants nested w/in Level2 clusters
- . Level2 clusters are randomized w/ 1:1 allocation to experimental groups
- . N=1000: $n_2=100$ clusters, each of size $n_1=10$
- . $y \sim N(0,1), x \sim B(0.50)$, where x is the experimental group indicator
- . Linear regression model
- . Intra-cluster correlation (ICC) of y (ρ_y) equals 0.05
- . 80% power with two-tailed α = .05

Goal

. Solve for minimum detectable effect size, b_x

In this context, the familiar Design Effect (Deff) is a useful SSR.

. SSR = Deff = $1 + r\rho_y$, where $r = n_1 - 1$,

Deff was described by Kish

Kish (1965). *Survey Sampling.* New York: John Wiley & Sons, Inc SE Gregorich Sample Size Ratios for Power Analysis

Ex #1a: Planning for a Cluster-Randomized Trial (CRT)

Application of SSR (Deff) to solve for b_x

<u>Step 1</u>. Calculate SSR & N_{eff} given r=9, $\rho_{y}=.05$, and N=1000

. SSR = Deff = $1 + r\rho_y = 1 + (10 - 1) \times .05 = 1.45$

$$N_{\rm eff} = N/\rm{SSR} = 1000/1.45 = 689.7$$

. Note. $N_{\rm eff} < N$

Step 2. Calculate minimum detectable effect specifying N=689.7

Result: $b_x = .21244$ (from PASS Linear Regression routine, $\sigma_v^2 = 1$)

In this case, a GLMM/GEE/SS model fit to N=1000 clustered observations obtains the same power as plain linear regression model fit to $N \cong 690$ independent observations (SRS)

Ex #1b: Planning for a Cluster-Randomized Trial (CRT)

If we instead began w/ values of b_x and n_1 , we could solve for n_2 and N. $b_x = 0.21244$

 $. n_1 = 10$

<u>Step 1</u>. Calculate *N* assuming b_x =.21244 & independent obs. (ρ_y =0)

. from PASS Linear Regression routine, N = 690, if $\rho_y = 0$ (PASS only returns integer *N* values)

. In this case, N from PASS is our target effective sample size, Neff

<u>Step 2</u>. Calculate *N* assuming ρ_v =.05 and *n*_{L1}=10

$$r_{\rm N} SSR = 1 + r\rho_{\rm V} = 1 + 9 \times .05 = 1.45$$

$$N = N_{\text{eff}} \times \text{SSR} = 690 \times 1.45 = 1000.5$$

. $n_2 = N/n_1 = 1000.5/10 \cong 100$

Ex #2: Planning for a RCT Randomizing Level1 Units

Context

- . Clustered sampling: Level1 participants nested w/in Level2 clusters
- . Level1 units are randomized with 1:1 allocation to experimental groups
- . N=1000: $n_2=100$ clusters, each of size $n_1=10$
- . $y \sim N(0,1)$, $x \sim B(0.50)$, where x is the experimental group indicator
- . Linear regression model
- . Intra-cluster correlation (ICC) of y (ρ_y) equals 0.05
- . 80% power with two-tailed α = .05

Goal

. Solve for minimum detectable effect size, b_x

In this context, a familiar sample size ratio is

. SSR = $1 - \rho_y$

This is the same SSR that applies to a paired *t*-test

Ex #2: Planning for a RCT Randomizing Level1 Units

Application of the SSR: solve for b_x

<u>Step 1</u>. Calculate SSR and Effective Sample Size (N_{eff})

$$.SSR = 1 - \rho_v = 1 - .05 = 0.95$$

$$N_{\rm eff} = N/\rm{SSR} = 1000/0.95 = 1052.6$$

. Note. $N_{\rm eff} > N$

<u>Step 2</u>. Calculate minimum detectable effect specifying N=1052.6

Result: $b_x = .17222$ (from PASS)

Here, a GLMM/GEE/SS model fit to *N*=1000 clustered observations obtains the same precision as a plain model fit to *N*=1053 independent observations

So far, we've discussed two sample size ratios

 $SSR = Deff = 1 + r\rho_y$

and

 $SSR = 1 - \rho_y$

When does each apply?

The choice depends on whether the *x* has

- . a between-cluster or
- . a within-cluster effect

The intra-cluster correlation of $x(\rho_x)$ is important

We often think of ICC in terms of a variance component decomposition.

$$\rho = \frac{\sigma_{\text{between_cluster}}^2}{\sigma_{\text{between_cluster}}^2 + \sigma_{\text{w/in_cluster}}^2}$$

However, that formulation has positive bias.

When thinking about ρ_x , it is helpful to consider the unbiased formula (Harris 1913; Kish 1965; Wikipedia ICC page)

$$\sigma_x = \frac{\sigma_{x.\text{between_cluster}}^2 - \sigma_{x.\text{w/in_cluster}}^2/r}{\sigma_{x.\text{between_cluster}}^2 + \sigma_{x.\text{w/in_cluster}}^2}$$

Harris JA (1913). On the calculation of intra-class and inter-class coefficients of correlation from class moments when the number of possible combinations is large. *Biometrika*, 9, 446–472.

Kish, Leslie (1965). *Survey Sampling.* New York: John Wiley & Sons, Inc (p. 170)

SE Gregorich

 $SSR = Deff = 1 + r\rho_y$

In a regression context, this SSR applies when x has a fully <u>between-cluster</u> effect on y

When will x have a fully <u>between-cluster</u> effect on y? . When x is a Level2 variable; it will have

positive between-cluster & zero (0) within-cluster variance

. In this case, the intra-cluster correlation of $x(\rho_x)$ equals 1.0.

Consider the unbiased formula for intra-cluster correlation as applied to x

$$\rho_{\chi} = \frac{\sigma_{\chi.\text{between_cluster}}^2 - 0/r}{\sigma_{\chi.\text{between_cluster}}^2 + 0} = 1$$

Use of this SSR (i.e., SSR = Deff = $1 + r\rho_y$) assumes a fully between-cluster *x* effect, $\rho_x = 1$

Therefore, I label this SSR as SSR_b (i.e., sub-'b' for 'between')

SE Gregorich

Sample Size Ratios for Power Analysis

Summary Implications: SSR_b

. SSR_b for a fully between-cluster effect, i.e., when $\rho_{\chi} = 1$ ${\rm SSR}_{\rm b} = 1 + r \rho_{y},$

Basic results for SSR_b

ρ_y	SSR _b result	N _{eff} vs N
$\rho_y = 0$	$SSR_b = 1$	$N_{\rm eff} = N/1 = N$
$\rho_y > 0$	$SSR_b > 1$	$N_{\rm eff} = N/{\rm SSR}_{\rm b} < N$

. I.e., when $\rho_x = 1$ and $\rho_y > 0$,

x has a between-cluster effect that will have <u>lower</u> precision versus within an alternative SRS design, all else being equal

Note. $\rho_y < 0$ is rare and not considered in this talk

 $\mathrm{SSR} = 1 - \rho_{\mathcal{Y}}$

In a regression context...

- . This SSR applies when x has a fully within-cluster effect on y.
- . I.e., when x has exactly \underline{zero} (**0**) between-cluster variation.
- . In this circumstance, ρ_x takes its minimum value.

$$\rho_{\chi} = \frac{\mathbf{0} - \sigma_{\mathrm{w/in_cluster}}^2/r}{\mathbf{0} + \sigma_{\mathrm{w/in_cluster}}^2} = \frac{-1}{r}$$

When will *x* have a fully <u>within-cluster</u> effect?

- . Often, a Level1 design variable w/ zero between-cluster variation, e.g.,
- . RCT randomizing Level1 units w/ identical proportionate allocation across clusters
- . x indicates scheduled assessment times (base, 6m, 12m)
- . x indicates intra-cluster role/position, e.g., doctor versus patient
- . Not always design vars. e.g., x holds deviations from cluster means

I label this SSR (i.e., SSR = $1 - \rho_y$) as SSR_w (i.e., sub-'w' for 'within')

Summary Implications: SSR_w

. SSR_w for a fully within-cluster effect, i.e., when $\rho_x = -1/r$ ${\rm SSR_w} = 1 - \rho_y$

Basic results for SSR_w

$ ho_y$	SSR _w result	N _{eff} vs N
$ ho_{\mathcal{Y}}=0$	$SSR_w = 1$	$N_{\rm eff} = n_{\rm L2} \times n_{\rm L1} = N$
$\rho_y > 0$	$SSR_w < 1$	$N_{\rm eff} = N/{\rm SSR}_{\rm w} > N$

. I.e., when $\rho_x = -1/r$ and $\rho_y > 0$,

x has a within-cluster effect that will have higher precision vs SRS

SSR_w applies whenever $\rho_x = -1/r$

 $\rho_x = -1/r$ when between-cluster *x* variation equals zero (exactly). . Often, but not always, by design (e.g., assessment times) or analysis (e.g., deviation scores)

So far, we've covered SSRs for

- . fully between-cluster effects, i.e., when $\sigma_{x.within}^2 = 0$, $\rho_x = 1$ and
- . fully within-cluster effects, i.e., when $\sigma_{x.\text{between}}^2 = 0$, $\rho_x = -1/r$

However, ρ_x values are not limited to -1/r and 1

When $-1/r < \rho_x < 1$,

x can have both between- and within-cluster effects

You might expect $-1/r < \rho_x < 1$ when x is a(n)...

- . design var. w/ some between-cluster variance (often $-1/r <
 ho_{\chi} < 0$)
- . observed random, eg, participant-reported, variable (often $0 \le \rho_x < 1$)

Which SSR should be used when $-1/r < \rho_x < 1$?

The answer depends upon the regression modeling framework, i.e.,

- . Survey Sampling (SS) versus
- . Generalized Linear Mixed Models (GLMM) or GEE

Why is this the case?

First, a side note. The formulation...

 $\rho_{x} = \frac{\sigma_{x.\text{between_cluster}}^{2} - \sigma_{x.\text{w/in_cluster}}^{2}/r}{\sigma_{x.\text{between_cluster}}^{2} + \sigma_{x.\text{w/in_cluster}}^{2}}$

makes it clear that $\rho_x = 0$ when $\sigma_{x.between_cluster}^2 = \sigma_{x.w/in_cluster}^2 / r$

Thus, when $\rho_x = 0$, positive between-cluster variation is expected

Reminder...

In this talk, when $-1/r < \rho_x < 1$,

I assume equivalent between- and within-cluster effects of x

For reference, John Neuhaus describes modeling options that decompose between- and within-cluster effects.

Neuhaus, JM and Kalbfleisch, JD (1988). Between- and within-cluster covariate effects in the analysis of clustered data. *Biometrics*, 54, 638-645.

Neuhaus, JM (2001). Assessing change with longitudinal and clustered binary data. *Annual Review of Public Health*, 22, 115-118.

SSR_{SS}: SSR for the Survey Sampling regression modeling framework $SSR_{SS} = 1 + r\rho_x\rho_y$ Essentially, SSR_{SS} adds ρ_x to the product term of SSR_b

SSR_{SS} versus SSR_b and SSR_w

$ ho_x$	Result
1.0	$SSR_{SS} = SSR_b = 1 + r\rho_y$
-1/r	$1 - \rho_y = SSR_w = SSR_{SS}$
$-1/r < \rho_x < 1$	$1 - \rho_y < SSR_{SS} < 1 + r\rho_y$

SSR_{SS} was described by

Scott, AJ and Holt, D (1982). The Effect of Two-Stage Sampling on Ordinary Least Squares Methods. *Journal of the American Statistical Association*, 77(380), 848-854.

(the SSR_{SS} label is mine)

SE Gregorich

Sample Size Ratios (SSR): 2-Level Sampling Designs									
SSR _{SS} =	$SSR_{SS} = 1 + r\rho_x\rho_y$ vs $SSR_b = 1 + r\rho_y$ vs $SSR_w = 1 - \rho_y$								
Examp	Example SSR _{SS} results assuming SS model, $\rho_v = 0.10$, <i>N</i> =1000, <i>r</i> =10								
ρ_{x}	$\rho_{\rm v}$	x effect type	x effect type $Neff_{SS} = Neff_b = Neff_w =$						
			1000/SSR _{SS}	1000/SSR _b	1000/SSR _w				
1.00	0.10	btw-cluster	500	500					
0.10	0.10	btw- & w/in- 909							
0	0.10	btw- & w/in- 1000							
-0.05	0.10	btw- & w/in-	1053						
-0.10+	0.10	w/in-cluster	1111		1111				

 $\rho_x = -1/r = -0.10$. '--': Inappropriate applications of SSR_b & SSR_w

When applying the SS modeling framework

- . Do not use SSR_b unless $\rho_{\chi} = 1$ (or, trivially, $\rho_{\gamma} = 0$)
 - If $\rho_{\chi} < 1$, then use of SSR_b can <u>underestimate</u> N_{eff} , power

. Do not use SSR_w unless
$$\rho_x = -1/r$$

if $-1/r < \rho_x$, then use of SSR_w can overestimate N_{eff}, power

SSR_{GE} for the GEE and GLMM modeling frameworks $SSR_{GE} = \frac{(1+r\rho_y)(1-\rho_y)}{1-\rho_y+r\rho_y(1-\rho_x)} = \frac{1-\rho_y+r\rho_y(1-\rho_y)}{1-\rho_y+r\rho_y(1-\rho_x)}$

SSR_{GE} is based upon the seminal (but underutilized) work of Basagaña, Liao, and Spiegelman (2011; BLS).

BLS were focused on power of longitudinal studies estimating the effects of a time-varying binary *x* variable.

BLS reported a SSR assuming compound symmetric (CS) ρ_x and ρ_y versus assuming $\rho_x = 1$ and CS ρ_y . See their Eq. 3.5.

SSR_{GE} manipulates BLS Eq. 3.5 to reflect comparison of . a clustered sampling design with CS ρ_x and ρ_y versus *N* independently sampled units (SRS).

. See Appendix A

Basagaña, X., Liao, X., and Spiegelman. D. (2011). Power and sample size calculations for longitudinal studies estimating a main effect of a timevarying exposure. *Statistical Methods in Medical Research*, 29, 181-192.

SSR_{GE} for the GEE and GLMM modeling frameworks

$$SSR_{GE} = \frac{1 - \rho_y + r\rho_y(1 - \rho_y)}{1 - \rho_y + r\rho_y(1 - \rho_x)}$$

SSR_{GE} versus SSR_b, SSR_w, and SSR_{SS}

ρ_x		Result	
1.0		$SSR_{GE} = SSR_{SS} = SSR_{SS}$	$R_{\rm b} = 1 + r\rho_y$
-1/r	$1 - \rho_y = SSR$	$R_w = SSR_{GE} = SSR_{SS}$	
$-1/r < \rho_x < 1$	$1 - \rho_y <$	$SSR_{GE} < SSR_{SS}$	$< 1 + r\rho_y$

Notes.

. $SSR_{GE} \leq SSR_{SS}$

. When $-1/r < \rho_x < 1$, $Neff_{GE} > Neff_{SS}$, i.e., superior power via the GEE/GLMM vs SS modeling framework

Sample Size Ratios ((SSR)	: 2-Level Sampling Designs
$SSR_{GE} = \frac{1 - \rho_y + r\rho_y(1 - \rho_y)}{1 - \rho_y + r\rho_y(1 - \rho_x)}$	VS	$SSR_{SS} = 1 + r\rho_x\rho_y$

Results: Neff_{GE} versus Neff_{SS}: N=1000, $\rho_{v} = 0.10$, r = 10

$ ho_x$	$ ho_y$	x effect type	Neff _{GE} = 1000/SSR _{GE}	<i>N</i> eff _{SS} = 1000/SSR _{SS}	$\frac{Neff_{GE}}{Neff_{SS}}$
1.00	0.10	btw-cluster	500	500	=
0.10	0.10	btw- & w/in-	1000	909	+10% [‡]
0	0.10	btw- & w/in-	1056	1000	+6% ‡
-0.05	0.10	btw- & w/in-	1083	1053	+3% ‡
-0.10†	0.10	w/in-cluster	1111	1111	=

note. [†] $\rho_x = -1/r = -0.10$. [‡] GEE/GLMM has a power advantage over SS

The tabled results are not dramatic, but the GEE/GLMM advantage can be stark for some combinations of ρ_x , ρ_y , and r

When you have a choice, GEE/GLMM can be more efficient than SS

Sample Size Ratios (SSR): 2-Level Sampling Designs						
SSR _{GE} =	$=\frac{1-\rho_y+r\rho_y(1-\rho_y)}{1-\rho_y+r\rho_y(1-\rho_x)}$	VS	$SSR_{SS} = 1 + r\rho_x\rho_y$			

Results: Neff_{GE} vs Neff_{SS}: N=1000, ρ_v =.50, r=1 (e.g., repeated measures)

$ ho_x$	$ ho_y$	x effect type	Neff _{GE} = 1000/SSR _{GE}	Neff _{SS} = 1000/SSR _{SS}	Neff _{GE} Neff _{SS}
1.00	0.50	btw-cluster	667	667	=
0.10	0.50	btw- & w/in-	1267	952	+33% ‡
0	0.50	btw- & w/in-	1333	1000	+33% [‡]
-0.50	0.50	btw- & w/in-	1667	1333	+25% [‡]
-1.00†	0.50	w/in-cluster	2000	2000	=

note. † $\rho_x = -1/r = -1.0$. ‡ GEE/GLMM has a power advantage over SS

The following slide compares SSR_{GE} and SSR_{SS} values for a range of ρ_x and ρ_y values and r=1 Expected Neff_{GE} (**bold**) & Neff_{SS} (regular): r=1 & N=1000

		$\rho_{\rm y}$					
		0	0.3	0.6	0.9		
	-1/r	1000	1429	2500	10,000		
		1000	1429	2500	10,000		
	0	1000	1099	1563	5263		
		1000	1000	1000	1000		
ρ _x	0.3	1000	1000	1281	3842		
		1000	917	847	787		
	0.6	1000	901	1000	2421		
		1000	847	735	649		
	0.9	1000	802	718	1000		
		1000	787	649	552		
	1.0	1000	769	625	526		
		1000	769	625	526		

. If $\rho_y = 0$ (green), $\rho_x = -1/r$ (purple), or $\rho_x = 1$ (pink), then $Neff_{GE} = Neff_{SS}$. Otherwise, $Neff_{GE} > Neff_{SS}$

. If $\rho_x = \rho_y$, then $Neff_{GE} = N$ (yellow)

- . If $\rho_x < \rho_y$, then $Neff_{GE} > N$ (purple & blue)
- . If $\rho_x > \rho_y,$ then $N\!\!\!\!\operatorname{eff}_{\operatorname{GE}} {\scriptstyle{\boldsymbol{<}}} N$ (orange & pink)

SSR inputs: linear versus logistic models

When planning for a logistic regression analysis there are some wrinkles

Population average (GEE, SS) versus unit-specific (GLMM)...

- . estimates of x effects (b_x) as well as
 - model-predicted vs observed outcome probabilities, and
- . estimates of ρ_x and ρ_y

Power analyses described in this talk require population average inputs

If inputting an effect estimate into power analysis for logistic regression, choose a population average estimate (e.g., based upon observed means or a GEE, ALR, or SS analysis)

Obtain ρ_x & ρ_y estimates from a GEE logistic model, not a mixed logistic model

- . GEE ICCs reflect intra-cluster homogeneity of observed values
- . In contrast, mixed logistic model ICCs reflect underlying latent values

Simulation comparing calculated versus simulated SSRs

Simulate 2-level data for c= 1 to 63 combinations of ρ_x and ρ_y values

- . ρ_x ranging from -1/r to 1.0
- . ρ_y ranging from 0 to 0.9

Generate *i*= 1 to 10K replicate samples from each of 63 combinations

Fit regression model to each replicate sample assuming independent obs. Save standard error estimates for fixed effect of *x*, $\hat{\sigma}_{ind.ci}$

Fit regression model to each replicate sample assuming clustered obs. Save standard error estimates for fixed effect of *x*, $\hat{\sigma}_{clus.ci}$

A simulated SSR for combination *c* averages $(\hat{\sigma}_{\text{clus.}ci}/\hat{\sigma}_{\text{ind.}ci})^2$ values across *i*=1 to 10K replicate samples

Compare simulated SSR to SSR_{GE} or SSR_{SS}, as appropriate

Simulated (bold) and Expected (plain) Values of SSR_{GE} assuming small clusters (r=1) and 63 Combinations of ρ_x and ρ_y : GEE Linear Regression Modeling Framework with exchangeable working correlation structure.

	ρ_y						
ρ_{x}	0	.05	.10	.25	.50	.75	.90
-1.0	1.000	0.950	0.900	0.749	0.499	0.249	0.099
(-1/r)	1.000	0.950	0.900	0.750	0.500	0.250	0.100
	0.998	0.996	0.988	0.936	0.749	0.437	0.188
0	1.000	0.998	0.990	0.938	0.750	0.438	0.190
	0.998	0.998	0.993	0.948	0.769	0.454	0.196
.05	1.000	1.000	0.995	0.949	0.769	0.455	0.199
	0.998	1.000	0.998	0.960	0.789	0.471	0.206
.10	1.000	1.003	1.000	0.962	0.789	0.473	0.209
	0.998	1.008	1.013	0.998	0.855	0.537	0.243
.25	1.000	1.010	1.015	1.000	0.857	0.538	0.245
	0.998	1.021	1.040	1.069	0.998	0.699	0.341
.50	1.000	1.023	1.042	1.071	1.000	0.700	0.345
	0.997	1.034	1.068	1.152	1.198	0.996	0.578
.75	1.000	1.036	1.070	1.154	1.200	1.000	0.585
	0.997	1.043	1.086	1.207	1.362	1.343	0.991
.90	1.000	1.045	1.088	1.210	1.364	1.346	1.000
	0.997	1.048	1.098	1.249	1.499	1.750	1.901
1.00	1.000	1.050	1.110	1.250	1.500	1.750	1.900

Note. Simulated data for each combination of ρ_x and ρ_y included *m*=500 clusters, *n*=2 units per cluster, *N*=1000, and 10K replicate samples. Simulated SSR_{GE} estimated from comparison of std errs estimated from GEE model versus cluster-naïve model. Cell shading codes for combinations of ρ_x and ρ_y values: Grey: E[SSR_{GE}]=1.0. Green: E[SSR_{GE}]<1.0; Orange: E[SSR_{GE}]>1.0

	$ ho_y$							
ρ_x	0	.05	.10	.25	.50	.75	.90	
-1.0	1.000	0.947	0.900	0.750	0.500	0.251	0.100	
(-1/r)	1.000	0.950	0.900	0.750	0.500	0.250	0.100	
	0.998	0.996	0.988	0.936	0.750	0.439	0.191	
0	1.000	0.998	0.990	0.938	0.750	0.438	0.190	
	0.998	0.998	0.993	0.948	0.769	0.456	0.200	
.05	1.000	1.000	0.995	0.949	0.769	0.455	0.199	
	0.998	1.001	0.998	0.960	0.790	0.473	0.210	
.10	1.000	1.003	1.000	0.962	0.789	0.473	0.209	
	0.998	1.009	1.013	0.998	0.856	0.539	0.247	
.25	1.000	1.010	1.015	1.000	0.857	0.538	0.245	
	0.999	1.023	1.040	1.069	0.999	0.701	0.346	
.50	1.000	1.023	1.042	1.071	1.000	0.700	0.345	
	0.999	1.037	1.069	1.153	1.199	0.998	0.586	
.75	1.000	1.036	1.070	1.154	1.200	1.000	0.585	
	0.999	1.047	1.088	1.209	1.363	1.345	1.000	
.90	1.000	1.045	1.088	1.210	1.364	1.346	1.000	
	0.999	1.053	1.100	1.251	1.501	1.752	1.903	
1.00	1.000	1.050	1.100	1.250	1.500	1.750	1.900	

Simulated (bold) and Expected (plain) Values of SSR_{GE} assuming small clusters (*r*=1) and 63 Combinations of ρ_x and ρ_y : GLMM Linear Regression Modeling Framework with exchangeable working correlation structure.

Note. Simulated data for each combination of ρ_x and ρ_y included *m*=500 clusters, *n*=2 units per cluster, *N*=1000, and 10K replicate samples. Simulated SSR_{GE} estimated from comparison of std errs estimated from GLMM linear model versus cluster-naïve model. Cell shading codes for combinations of ρ_x and ρ_y values: Grey: E[SSR_{GE}]=1.0. Green: E[SSR_{GE}]<1.0; Orange: E[SSR_{GE}]>1.0

Simulated (bold) and Expected (plain) Values of SSR_{SS} assuming small clusters (*r*=1) and 63 Combinations of ρ_x and ρ_y : Survey Sampling Linear Regression Modeling Framework.

	ρ_y										
ρ_{X}	0	.05	.10	.25	.50	.75	.90				
-1.0	1.001	0.951	0.901	0.750	0.501	0.251	0.100				
(-1/r)	1.000	0.950	0.900	0.750	0.500	0.250	0.100				
	1.000	0.999	1.001	0.999	0.999	1.001	1.000				
0	1.000	1.000	1.000	1.000	1.000	1.000	1.000				
	0.999	1.003	1.004	1.012	1.025	1.037	1.043				
.05	1.000	1.003	1.005	1.013	1.025	1.038	1.045				
	1.001	1.004	1.010	1.025	1.050	1.073	1.088				
.10	1.000	1.005	1.010	1.025	1.050	1.075	1.090				
	0.999	1.012	1.024	1.062	1.123	1.185	1.223				
.25	1.000	1.013	1.025	1.063	1.125	1.188	1.225				
	0.999	1.023	1.049	1.123	1.248	1.372	1.447				
.50	1.000	1.025	1.050	1.125	1.250	1.375	1.450				
	0.997	1.035	1.073	1.186	1.372	1.560	1.673				
.75	1.000	1.038	1.075	1.188	1.375	1.563	1.675				
	0.996	1.043	1.088	1.222	1.447	1.672	1.809				
.90	1.000	1.045	1.090	1.225	1.450	1.675	1.810				
	0.997	1.047	1.096	1.246	1.496	1.748	1.900				
1.00	1.000	1.050	1.100	1.250	1.500	1.750	1.900				

Note. Simulated data for each combination of ρ_x and ρ_y included *m*=500 clusters, *n*=2 units per cluster, *N*=1000, and 10K replicate samples. Simulated SSR_{SS} estimated from comparison of std errs estimated from SS linear model versus cluster-naïve model. Cell shading codes for combinations of ρ_x and ρ_y values: Grey: E[SSR_{GE}]=1.0. Green: E[SSR_{GE}]<1.0; Orange: E[SSR_{GE}]>1.0

Simulated (bold) and Expected (plain) Values of SSR_{GE} assuming large clusters (r = 50) and 63 Combinations of ρ_x and ρ_y : GEE Linear Regression Modeling Framework with exchangeable working correlation structure.

	ρ_y										
ρ_{x}	0	.05	.10	.25	.50	.75	.90				
02	1.000	0.951	0.902	0.754	0.507	0.257	0.104				
(-1/r)	1.000	0.950	0.900	0.750	0.500	0.250	0.100				
	0.999	0.964	0.917	0.768	0.517	0.262	0.106				
0	1.000	0.964	0.915	0.764	0.510	0.255	0.102				
	0.998	0.999	0.956	0.806	0.544	0.275	0.112				
.05	1.000	1.000	0.956	0.802	0.536	0.268	0.107				
	0.995	1.038	1.000	0.847	0.572	0.291	0.118				
.10	1.000	1.039	1.000	0.844	0.565	0.283	0.113				
	0.990	1.171	1.158	1.001	0.684	0.348	0.141				
.25	1.000	1.177	1.161	1.000	0.675	0.339	0.136				
	0.984	1.491	1.573	1.444	1.010	0.519	0.212				
.50	1.000	4.511	1.588	1.446	1.000	0.507	0.204				
	0.978	2.065	2.464	2.590	1.936	1.025	0.421				
.75	1.000	2.111	2.512	2.613	1.926	1.000	0.405				
	0.976	2.693	3.754	4.965	4.330	2.457	1.038				
.90	1.000	2.771	3.857	5.063	4.333	2.406	1.000				
	0.974	3.411	5.884	13.146	25.451	38.051	45.734				
1.00	1.000	3.500	6.000	13.500	26.000	38.500	46.000				

Note. Simulated data for each combination of ρ_x and ρ_y included *m*=75 clusters, *n*=51 units per cluster, *N*=3825, and 10K replicate samples. Simulated SSR_{GE} estimated from comparison of std errs estimated from GEE linear model versus cluster-naïve model. Cell shading codes for combinations of ρ_x and ρ_y values: Grey: E[SSR_{GE}]=1.0. Green: E[SSR_{GE}]<1.0; Orange: E[SSR_{GE}]>1.0

Simulation Results: Multivariate Logistic Models. Expected vs Simulated Sample Size Ratios and Statistical Power across the SS & GEE Modeling Frameworks: r=2, m=500, $\rho_y=0.349$ (population average), & 50K replicate samples.

X Va	ariables	Survey	Samplir	ng Model	ing Fram	nework ^b	GEE Modeling Framework ^c					
	a SSR _{SS}		Rss	Neffss	Power		SSR _{GE}		Neff _{GE}	Power		<i>N</i> eff _{GE}
	$ ho_{\chi}$	expected	simulated e	expected f	expected g	simulated	expected d	simulated e	expected f	expected g	simulated	Neff _{SS}
<i>X</i> 1	-1.00	0.651	0.653	1535	.715	.701	0.651	.647	1535	.715	.709	1.00
X 2	0	1.000	1.000	1000	.532	.511	0.878	.872	1138	.586	.572	1.14
X 3	0.25	1.087	1.086	920	.499	.477	0.962	.956	1039	.547	.530	1.13
X 4	0.50	1.174	1.173	852	.469	.453	1.064	1.059	934	.505	.496	1.10
X 5	0.75	1.261	1.259	793	.443	.427	1.189	1.187	841	.464	.452	1.06
X 6	1.00	1.349	1.346	742	.420	.400	1.349	1.351	742	.420	.403	1.00

^a x_1 - x_6 jointly uncorrelated & each unit-standardized; column ' ρ_x ' reports the population intra-cluster correlation value of each x variable.

^b Survey sampling modeling framework: fixed effect parameters estimated assuming independent observations and standard errors estimated via the Taylor series method ($\hat{\sigma}_{Taylor}$) assuming a compound-symmetric covariance structure.

^c GEE Modeling framework: fixed effect parameters and model-based standard errors ($\hat{\sigma}_{Mod}$) estimated by a GEE linear model with compound symmetric working correlation structure.

^d $SSR_{SS} = 1 + r\rho_x\rho_y$ and $SSR_{GE} = [1 - \rho_y + r\rho_y(1 - \rho_y)]/[1 - \rho_y + r\rho_y(1 - \rho_x)]$, where r=1, ρ_x values as tabled, and $\rho_y=0.349$.

^e the quantity $(\hat{\sigma}_{\text{Tay}_i}/\hat{\sigma}_{\text{ind}_i})^2$ or $(\hat{\sigma}_{\text{Mod}_i}/\hat{\sigma}_{\text{ind}_i})^2$, as appropriate, averaged over *i*=1 to 50K replicate samples, where $\hat{\sigma}_{\text{ind}_i}$ denotes the corresponding standard error estimate assuming independent observations.

^f Neffss=N; SSRs and Neff_{GE}=N; SSR_{GE}, where N=1000.

^g Statistical power calculated by PASS assuming *N*eff_{SS} or *N*eff_{GE}, as appropriate, two-tailed α =.05, fixed effect of *x* equal $b_{pa}\approx 0.130$ (population average), $P[y=1|x=0]\approx 0.533$ (population average), $P[y=1|any x=1]\approx 0.565$ (population average), and $\sigma_x=1.0$.

SE Gregorich

^h Simulated statistical power represents the proportion of corresponding replicate-sample fixed effect parameter estimates with test *p*-value <.05.

<u>3-Level</u> Clustered Sampling Design: Simple Example

Example: Multisite RCT w/ sites (s), people (p), measures (m)

Levels and Sample sizes

- . Sites (s) @ Level3: *n*3 = 30 sites
- . People (p) @ Level2: $n^2 = 10$ people per site. Units of randomization
- . Measures (m) @ Level1: n1 = 2 assessment times per person

x variables

x3 is a site-level (L3) continuous covariate

. *x*3 has positive between site variation and zero within site variation . $\rho_{x3} = 1.0$. The intra-site correlation of *x*3

x2 is the person-level (L2) binary experimental group indicator

. Assume x2 has zero between-site variation

 $\rho_{x2} = -1/(10-1) = -.\overline{111}$. The intra-site correlation of x2

x1 is the binary assessment time indicator at L1

. x1 has zero between-person variation

 $\rho_{x1} = -1/(2-1) = -1.$ The intra-person correlation of x1

<u>3-Level</u> Clustered Sampling Design: Simple Example Example: Multisite RCT w/ sites (s), people (p), measures (m)

Common types of ρ_y estimates reported from a 3-level model

$$\rho_{y.s} = \frac{\sigma_{y.s}^2}{\sigma_{y.s}^2 + \sigma_{y.p}^2 + \sigma_{y.m}^2}$$
Proportion of *y* var. attributable to sites
$$\rho_{y.s\&p} = \frac{\sigma_{y.s}^2 + \sigma_{y.p}^2}{\sigma_{y.s}^2 + \sigma_{y.p}^2 + \sigma_{y.m}^2}$$
Prop. of *y* var attributable to sites & pts
$$\rho_{y.p} = \frac{\sigma_{y.s}^2 + \sigma_{y.p}^2 + \sigma_{y.m}^2}{\sigma_{y.s}^2 + \sigma_{y.p}^2 + \sigma_{y.m}^2}$$
Prop. of *y* var. attributable to patients

Both $\rho_{y.s\&p}$ and $\rho_{y.s}$ may be described as 'ICC at Level2' . When reading the literature, be clear whether $\rho_{y.s\&p}$ or $\rho_{y.s}$ is reported . When reporting, be clear whether you are reporting $\rho_{y.s\&p}$ or $\rho_{y.s}$

3-Level Clustered Sampling Design: Simple Example

Example: Multisite RCT w/ sites (s), people (p), measures (m)

<u>1. SSR for x3.</u> A site variable w/ ρ_{x3} =1 has a fully a between-site effect

My initial, incorrect conjecture $SSR_{x3} = SSR_{b(s)} = 1 + (10 \times 2 - 1)\rho_{v.s}$

Correction $SSR_{x3} = SSR_{b(s)} = 1 + (10 \times 2 - 1)\rho_{v.s(2)},$

where $\rho_{y,s(2)}$ is the intra-site correlation of y estimated from a 2-level model that excludes Level2 cluster indicators (persons). I.e., only top-level (site) clusters are modeled, i.e.,

 $\rho_{y.s(2)} = \frac{\sigma_{y.s(2)}^2}{\sigma_{y.s(2)}^2 + \sigma_{y.m(2)}^2}$ Proportion of y var. attrib. to sites: from <u>2-level model</u>

<u>3-Level</u> Clustered Sampling Design: Simple Example

Example: Multisite RCT w/ sites (s), people (p), measures (m)

1. SSR for x3, which has a fully a between-site effect

. Given a 3-level data structure, when a model ignores the 2nd level, the Level2 variation is distributed to both Level3 & Level1 (Moerbeek).

From a 3-level model: of	otain prop. of variance explained at Levels 2 & 3
$ \rho_{y.s} = .05 $	Proportion of y variance attributable to sites
$ \rho_{y.p} = .10 $	Proportion of y variance attributable to people
$ \rho_{y.p} = .85 $	Proportion of y variance attributable to measures

Given
$$\rho_{y.s} = .05$$
, $\rho_{y.p} = .10$, $n2=10$, and $n1=2$, estimate $\rho_{y.s}$...
 $\rho_{y.s} = \rho_{y.s} + \rho_{y.p}(n1-1)/(n2 \times n1-1) = .05 + .10/19 = .055263$
 $SSR_{x3} = 1 + (10 \times 2 - 1) \times 055263 = 2.05$

Moerbeek, M (2004). The Consequence of Ignoring a Level of Nesting in Multilevel Analysis. *Multivariate Behavioral Research*, 39. 129-149. SE Gregorich Sample Size Ratios for Power Analysis

<u>3-Level</u> Clustered Sampling Design: Simple Example

Example: Multisite RCT w/ sites (s), people (p), measures (m)

2. SSR for x2. A Level 2 variable w/ $\rho_{x2} = -1/r$ has a fully within-site/fully between-people effect

My initial, incorrect conjecture

 $SSR_{x2} = SSR_{w(s)} \times SSR_{b(p)} = (1 - \rho_{y.s}) \times [1 + (2 - 1)\rho_{y.p}]$

Correction

$$SSR_{x2} = SSR_{w(s)} \times SSR_{b(p)} = \left(1 - \rho_{y.s}\right) \times \left[1 + \left(\frac{2 - 1}{1 - \rho_{y.s}}\right)\rho_{y.p}\right]$$
$$= \left(1 - \rho_{y.s}\right) \times \left[1 + (2 - 1)\right]\rho_{y.ps},$$

where $\rho_{y.ps}$ is estimated via var. components from a <u>3-level model, i.e.</u>,

$$\rho_{y.ps} = \frac{\sigma_{y.p}^2}{\sigma_{y.p}^2 + \sigma_{y.m}^2} \quad \text{Prop. } y \text{ var. attrib. to people, removing site variation}$$

Given $\rho_{y.s} = .05, \rho_{y.p} = .10, \rho_{y.m} = .85, \& n1=2.$
 $\rho_{y.ps} = .10/(.10 + .85) = .10526$
 $\text{SSR}_{x2} = (1 - .05) \times [1 + (2 - 1)]. 10526 = 1.05$

3-Level Clustered Sampling Design: Simple Example

Example: Multisite RCT w/ sites (s), people (p), measures (m)

3. SSR for x1, which has a fully within-site/fully within-people effect

<u>My initial, incorrect conjecture</u> $SSR_{x1} = SSR_{w(s)} \times SSR_{w(p)} = (1 - \rho_{y.s})(1 - \rho_{y.p})$

$$\frac{\text{Correction}}{\text{SSR}_{x1} = \text{SSR}_{w(s)} \times \text{SSR}_{w(p)} = (1 - \rho_{y.s})(1 - \rho_{y.ps}),$$

where $\rho_{y.ps}$ is estimated as described above

Given
$$\rho_{y.s} = .05$$
 and $\rho_{y.ps} = .10526$
SSR_{x1} = $(1 - .05)(1 - .10526) = 0.85$

3-Level Clustered Sampling Design: Simple Example

Simulated data from 3-Level Linear Mixed Model w/ 2K replicate samples

- . n3=30 sites (L3), n2=10 subjects/site (L2), n1=2 assessments/subject
- . x3: a normal random variate at Level3
- . x2: a binary randomized group indicator at Level2

x1: a binary assessment time indicator at Level1

		x effe	ect @		$ ho_y$ adju	stment	SSR _{GE}	
x(level)	$ ho_x$	L3	L2	$ ho_y$	$ ho_{y. ext{s}(2)}$	$ ho_{y.\mathrm{p}_{\mathbf{S}}}$	expected	simulated
<i>x</i> 3	1.0	btw		0.05	.05526		2.05	2.056
<i>x</i> 2	-1/r	w/in	btw	0.10		.10526	1.05	1.053
<i>x</i> 1	-1/r	w/in	w/in	0.85			0.85	0.854

SSR expected value calculations $= 1 + (10 \times 2 - 1) \times 0.05526 = 2.05$ $SSR_{GE,x3} = SSR_{b(s)}$

 $SSR_{GE,x2} = SSR_{w(s)} \cdot SSR_{b(p)} = (1 - 0.05) \times [1 + (2 - 1) \times 0.10526] = 1.50$

 $= (1 - 0.05) \times (1 - 0.10526) = 0.85$ $SSR_{GE,\chi_1} = SSR_{w(s)} \times SSR_{w(p)}$

SSR simulated values are relative size of std errs from LMM & Independence models, averaged over *i*=1 to 2K replicates: $(\hat{\sigma}_{LMM_i}/\hat{\sigma}_{Ind_i})^2$ Sample Size Ratios for Power Analysis SE Gregorich

3-Level Clustered Sampling Design: Alternative Design A Simulated data from 3-Level Linear Mixed Model w/ 2K replicate samples

- . n3=30 sites (L3), n2=10 subjects/site (L2), n1=2 assessments/subject
- . *x*3: a normal random variate at Level3
- . *x*2: a binary randomized group indicator at Level2
 - *x*1: a binary assessment time indicator at Level1

	x effect @				$ ho_y$ adju	Istment	SSR _{GE}	
<i>x</i> (level)	$ ho_x$	L3	L2	$ ho_y$	$ ho_{y.s(2)}$	$ ho_{y.\mathrm{p}\mathbf{s}}$	expected	simulated
xЗ	1.0	btw		0.2	.2368		5.50	5.564
x2	-1/r	w/in	btw	0.7		.875	1.50	1.523
<i>x</i> 1	-1/r	w/in	w/in	0.1			0.10	0.102

 $\begin{aligned} & \text{SSR expected value calculations} \\ & \text{SSR}_{\text{GE.}x3} = \text{SSR}_{b(s)} \\ & = 1 + (10 \times 2 - 1) \times 0.2368 = 5.50 \\ & \text{SSR}_{\text{GE.}x2} = \text{SSR}_{w(s)} \cdot \text{SSR}_{b(p)} = (1 - 0.20) \times [1 + (2 - 1) \times 0.875] = 1.50 \\ & \text{SSR}_{\text{GE.}x1} = \text{SSR}_{w(s)} \cdot \text{SSR}_{w(p)} \\ & = (1 - 0.20) \times (1 - 0.875) = 0.10 \end{aligned}$

SSR simulated values are relative size of std errs from LMM & Independence models, averaged over *i*=1 to 2K replicates: $(\hat{\sigma}_{\text{LMM}_i} / \hat{\sigma}_{\text{Ind}_i})^2_{\text{SE Gregorich}}$

3-Level Clustered Sampling Design: Alternative Design B Simulated data from 3-Level Linear Mixed Model w/ 2K replicate samples

- . n3=30 sites (L3), n2=10 subjects/site (L2), n1=5 assessments/subject
- . *x*3: a normal random variate at Level3
- . *x*2: a binary randomized group indicator at Level2
- x1: a uniform categorical assessment time indicator at Level1

		x effect @			$ ho_y$ adju	istment	SSR _{GE}	
x(level)	$ ho_{x}$	L3	L2	ρ_y	$ ho_{y.s(2)}$	$ ho_{y.\mathrm{ps}}$	expected	simulated
xЗ	1.0	btw		0.05	.0908		5.45	5.479
<i>x</i> 2	-1/r	w/in	btw	0.50		.5263	2.95	2.964
<i>x</i> 1	-1/r	w/in	w/in	0.45			0.45	0.455

SSR expected value calculations $SSR_{GE.x3} = SSR_{b(s)}$ = 1 + (10 × 5 - 1) × 0.0908 = 5.45

 $SSR_{GE,x2} = SSR_{w(s)} \cdot SSR_{b(p)} = (1 - 0.05) \times [1 + (5 - 1) \times 0.5263] = 2.95$

 $SSR_{GE,x1} = SSR_{w(s)} \cdot SSR_{w(p)} = (1 - 0.05) \times (1 - 0.5263) = 0.450$

SSR simulated values are relative size of std errs from LMM & Independence models, averaged over i=1 to 2K replicates: $(\hat{\sigma}_{\text{LMM}_i} / \hat{\sigma}_{\text{Ind}_i})^2$ SE Gregorich Sample Size Ratios for Power Analysis 41

Summary

Proper use of SSRs requires consideration of ρ_x

SSR_b [SSR_b = $1 + r\rho_y$] is well known, but perhaps over-applied. Improper application of SSR_b can lead to substantially under-estimated power, w/ cost and ethical implications

When $-1/r < p_x < 1$, choose GEE/GLMM over SS modeling framework

All results reported here assumed compound symmetric correlation structure of *x* and *y*

Power analysis for 3-level logistic models entails a few more wrinkles, mostly regarding estimation of population average ρ_y values (a future talk)

Some additional details and a quiz w/ answers included in the Appendix

Pre-post design Goal: test pre-post mean *y* difference in a one-arm longitudinal trial Will the pre-post comparison have a between- or within-cluster effect? What is the value of ρ_x ?

Clustered sample of teachers and their current students

Goal: regress students' SAT (*y*) onto teacher's years of experience (*x*) Will teacher experience have a between- or within-cluster effect? What is the value of ρ_x ?

Multisite RCT. Randomization of patients within each site

. Is the intervention group effect a between- or within-cluster effect? . What can be said about the expected ρ_x value?

Observational study with geographic cluster sampling

Goal: regress smoking status (y) onto respondent income (x)

Is income expected to have between- and/or within-cluster effects?

Appendix A: Derivation of SSR_{GE} from BLS (2011) Eq. 3.5.

For applications of the GLMM or GEE modeling frameworks, BLS Eq. 3.5 relates effective sample sizes under assumptions of

- . (i) CS correlation structures of x and y versus
- . (ii) CS correlation structure of y with $\rho_x = 1$

$$SSR_{BLS} = \frac{Neff_{\rho_x,\rho_y}}{Neff_{\rho_{x=1},\rho_y}} = \frac{1 - \rho_y + r\rho_y - r\rho_y\rho_x}{1 - \rho_y}$$
[BLS Eq. 3.5]

A SSR that relates observed *N* to *N*eff assuming CS correlation structures of *x* and *y* can be derived from BLS Eq. 3.5, as follows.

$$SSR_{GE} = \frac{N}{Neff_{\rho x,\rho y}} = \frac{\frac{N}{Neff_{\rho x=1,\rho y}}}{\frac{N}{Neff_{\rho x=1,\rho y}}} = \frac{SSR_{b}}{SSR_{BLS}} =$$
$$= \frac{1+r\rho_{y}}{\frac{1-\rho_{y}+r\rho_{y}-r\rho_{y}\rho_{x}}{1-\rho_{y}}} = \frac{(1-\rho_{y})(1+r\rho_{y})}{1-\rho_{y}+r\rho_{y}-r\rho_{y}\rho_{x}}$$
$$= \frac{1-\rho_{y}+r\rho_{y}(1-\rho_{y})}{1-\rho_{y}+r\rho_{y}(1-\rho_{x})}$$

Appendix B. SSR_{GE} results for selected values of
$$\rho_x$$
 (2-level model)

$$SSR_{GE} = \frac{(1-\rho_y)(1+r\rho_y)}{1-\rho_y(1-r(1-\rho_x))} = \frac{1-\rho_y+r\rho_y(1-\rho_y)}{1-\rho_y+r\rho_y(1-\rho_x)}$$
if $\rho_x = -1/r$, then

$$SSR_{GE} = \frac{(1-\rho_y)(1+r\rho_y)}{1-\rho_y+r\rho_y(1-\rho_x)} = \frac{SSR_w \times SSR_b}{SSR_b} = SSR_w$$
if $\rho_x = 1$, then

$$SSR_{GE} = \frac{(1-\rho_y)(1+r\rho_y)}{1-\rho_y+r\rho_y(1-\rho_x)} = \frac{SSR_w \times SSR_b}{SSR_w} = SSR_b$$
if $\rho_x = 0$, then

$$SSR_{GE} = \frac{(1-\rho_y)(1+r\rho_y)}{1-\rho_y+r\rho_y(1-\rho_x)} = \frac{SSR_w \times SSR_b}{1+(r-1)\rho_y} \cong 1 - \rho_y^{(n_1/r)}, \quad (\text{where } n_1 = r + 1)$$
i.e., as $r \to \infty$, $\frac{SSR_b}{1+(r-1)\rho_y} \to 1$, and $SSR_{GE} \to SSR_w$
Additionally, if $r=1$ then $SSR_{GE} = \frac{(1-\rho_y)(1+\rho_y)}{1} = 1 - \rho_y^2$

Paired t-test

Goal: test pre-post mean *y* difference in a one-arm longitudinal trial Here, respondents define the clusters and repeated measures (pre and post) are nested within respondents.

Will the pre-post comparison have a between- or within-cluster effect? Pre-post indicator (x) is defined at Level1. Each cluster (person) has 2 assessments: one pre (x=0) and one post (x=1). There is zero betweencluster variation of x and positive within-cluster variation of x. Therefore, the pre-post comparison is a fully within-cluster (within-person) effect.

What is the value of ρ_x ? In this case $\rho_x = -1/(2-1) = -1.0$

Clustered sample of teachers and their current students

Goal: regress students' SAT (y) onto teacher's years of experience (x) Teachers are clusters (Level2) and students (Level1) are nested within teachers

Will teacher experience have a between- or within-cluster effect? Teacher experience is a Level2 variable. Therefore, teacher experience will have a fully between-cluster (between-teacher) effect.

What is the value of ρ_x ?

Teacher experience will have positive between-cluster variation and zero within-cluster variation. Therefore, $\rho_x = 1$

Multisite RCT. Randomization of patients within each site Sites are clusters (Level2) and patients (Level1) are nested in sites

. Is the intervention group effect a between- or within-cluster effect? Intervention group indicator is a Level1 variable. Therefore, if the proportionate representation of Trt vs Ctrl assignment is identical across clusters, then the group effect will be a fully within-cluster effect. If the proportionate representation of group assignment varies slightly across site clusters, then a small of amount of between-cluster *x* variation will exist and the group comparison will be *mostly* a within-cluster effect.

. What can be said about the expected ρ_x value? $\rho_x = -1/r$ if the proportionate allocation to Trt v Ctrl is identical across clusters.

If proportionate treatment assignment varies across clusters, then $\rho_x > -1/r$. Given sufficient cluster size and between-site variation, ρ_x could become positive.

Observational study with geographic cluster sampling

Goal: regress smoking status (*y*) onto respondent income (*x*) Geographic areas are clusters (Level2) and respondents (Level1) are nested within clusters.

Is income expected to have between- and/or within-cluster effects? We expect that respondent income (*x*) will have both between- and within-cluster variation. Therefore, we expect $0 < \rho_x < 1$, which means that income (*x*) can have both between- and within-cluster effects on smoking status.